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Note

You are not using the most up to date version of the
documentation. denizyuret.github.io/Knet.jl [http://denizyuret.github.io/Knet.jl/latest] has the latest
version.
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Setting up Knet

Knet.jl is a deep learning package implemented in Julia, so you should
be able to run it on any machine that can run Julia.  It has been
extensively tested on Linux machines with NVIDIA GPUs and CUDA
libraries, but most of it works on vanilla Linux and OSX machines as
well (currently cpu-only support for some operations is incomplete).
If you would like to try it on your own computer, please follow the
instructions on Installation.  If you would like to try working
with a GPU and do not have access to one, take a look at Using Amazon
AWS.  If you find a bug, please open a GitHub issue [https://github.com/denizyuret/Knet.jl/issues].  If you
would like to contribute to Knet, see Tips for developers.  If you
need help, or would like to request a feature, please consider joining
the knet-users [https://groups.google.com/forum/#!forum/knet-users] mailing list.


Installation

First download and install the latest version of Julia from
http://julialang.org/downloads.  As of this writing the latest
version is 0.4.6 and I have tested Knet using 64-bit Generic Linux
binaries and the Mac OS X package (dmg).  Once Julia is installed,
type julia at the command prompt to start the Julia interpreter.
To install Knet just use Pkg.add("Knet"):

$ julia
               _
   _       _ _(_)_     |  A fresh approach to technical computing
  (_)     | (_) (_)    |  Documentation: http://docs.julialang.org
   _ _   _| |_  __ _   |  Type "?help" for help.
  | | | | | | |/ _` |  |
  | | |_| | | | (_| |  |  Version 0.4.6 (2016-06-19 17:16 UTC)
 _/ |\__'_|_|_|\__'_|  |  Official http://julialang.org/ release
|__/                   |  x86_64-apple-darwin13.4.0

julia> Pkg.add("Knet")





Some Knet examples use additional packages such as ArgParse, GZip and
JLD.  These are not required by Knet, you can install them manually
when needed using Pkg.add(“PkgName”).

Run Pkg.build("Knet") to recompile Knet after optional packages
are installed and to compile the Knet GPU kernels at first
installation if you have a GPU machine.  To make sure everything has
installed correctly, type Pkg.test("Knet") which should take a
minute kicking the tires.  If all is OK, continue with the next
section, if not you can get help at the knet-users [https://groups.google.com/forum/#!forum/knet-users] mailing list.




Tips for developers

Knet is an open-source project and we are always open to new
contributions: bug fixes, new machine learning models and operators,
inspiring examples, benchmarking results are all welcome.  If you’d
like to contribute to the code base, please sign up at the
[knet-dev](https://groups.google.com/forum/#!forum/knet-dev) mailing
list and follow these tips:


	Please get an account at github.com [https://www.github.com].

	Fork [https://help.github.com/articles/fork-a-repo] the Knet repository [https://github.com/denizyuret/Knet.jl].

	Point Julia to your fork using Pkg.clone("git@github.com:your-username/Knet.jl.git") and Pkg.build("Knet").  You may want to remove any old versions with Pkg.rm("Knet") first.

	Make sure your fork is up-to-date [https://help.github.com/articles/syncing-a-fork].

	Retrieve the latest version of the master branch using Pkg.checkout("Knet").

	Implement your contribution.

	Test your code using Pkg.test("Knet").

	Please submit your contribution using a pull request [https://help.github.com/articles/using-pull-requests].






Using Amazon AWS

If you don’t have access to a GPU machine, but would like to
experiment with one, Amazon Web Services [https://aws.amazon.com] is a possible solution.  I
have prepared a machine image (AMI [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html]) with everything you need to run
Knet.  Here are step by step instructions for launching a GPU instance
with a Knet image:

1. First, you need to sign up and create an account following the
instructions on Setting Up with Amazon EC2 [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html].  Once you have an
account, open the Amazon EC2 console at
https://console.aws.amazon.com/ec2 and login.  You should see the
following screen:

[image: _images/aws01.png]
2. Make sure you select the “N. California” region in the upper right
corner, then click on AMIs on the lower left menu.  At the search box,
choose “Public images” and search for “Knet”.  Click on the latest
Knet image (Knet-0.8.0 as of this writing).  You should see the
following screen with information about the Knet AMI. Click on the
“Launch” button on the upper left.

[image: _images/aws02.png]
Note: Instead of “Launch”, you may want to experiment with “Spot
Request [https://aws.amazon.com/ec2/spot/pricing]” under “Actions”
to get a lower price.  You may also qualify for an educational grant [https://aws.amazon.com/grants] if you are a student or researcher.

3. You should see the “Step 2: Choose an Instance Type” page.  Next to
“Filter by:” change “All instance types” to “GPU instances”.  This
should reduce the number of instance types displayed to a few.  Pick
the “g2.2xlarge” instance (“g2.8xlarge” has multiple GPUs and is more
expensive) and click on “Review and Launch”.

[image: _images/aws03.png]
4. This should take you to the “Step 7: Review Instance Launch”
page. You can just click “Launch” here:

[image: _images/aws04.png]
5. You should see the “key pair” pop up menu.  In order to login to
your instance, you need an ssh key pair.  If you have created a pair
during the initial setup you can use it with “Choose an existing key
pair”. Otherwise pick “Create a new key pair” from the pull down menu,
enter a name for it, and click “Download Key Pair”.  Make sure you
keep the downloaded file, we will use it to login.  After making sure
you have the key file (it has a .pem extension), click “Launch
Instances” on the lower right.

[image: _images/aws05.png]
6. We have completed the request.  You should see the “Launch Status”
page.  Click on your instance id under “Your instances are launching”:

[image: _images/aws06.png]
7. You should be taken to the “Instances” screen and see the address
of your instance where it says something like “Public DNS:
ec2-54-153-5-184.us-west-1.compute.amazonaws.com”.

[image: _images/aws07.png]

	Open up a terminal (or Putty if you are on Windows) and type:

ssh -i knetkey.pem ec2-user@ec2-54-153-5-184.us-west-1.compute.amazonaws.com









Replacing knetkey.pem with the path to your key file and
ec2-54-153-5-184 with the address of your machine.  If all goes
well you should get a shell prompt on your machine instance.

9. There you can type julia, and at the julia prompt
Pkg.update() and Pkg.build("Knet") to get the latest versions
of the packages, as the versions in the AMI may be out of date:

[ec2-user@ip-172-31-6-90 ~]$ julia
               _
   _       _ _(_)_     |  A fresh approach to technical computing
  (_)     | (_) (_)    |  Documentation: http://docs.julialang.org
   _ _   _| |_  __ _   |  Type "?help" for help.
  | | | | | | |/ _` |  |
  | | |_| | | | (_| |  |  Version 0.4.2 (2015-12-06 21:47 UTC)
 _/ |\__'_|_|_|\__'_|  |  Official http://julialang.org/ release
|__/                   |  x86_64-unknown-linux-gnu

WARNING: Terminal not fully functional
julia> Pkg.update()
julia> Pkg.build("Knet")





Finally you can run Pkg.test("Knet") to make sure all is good.
This should take about a minute.  If all tests pass, you are ready to
work with Knet:

julia> Pkg.test("Knet")
INFO: Testing Knet
INFO: Simple linear regression example
...
INFO: Knet tests passed

julia>
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Introduction to Knet

[image: https://travis-ci.org/denizyuret/Knet.jl.svg?branch=master]
 [https://travis-ci.org/denizyuret/Knet.jl]
 [http://pkg.julialang.org/?pkg=Knet]
 [http://pkg.julialang.org/?pkg=Knet]Knet [http://knet.rtfd.org] (pronounced “kay-net”) is the Koç
University [http://www.ku.edu.tr/en] deep learning framework
implemented in Julia [http://julia.rtfd.org] by Deniz Yuret [http://www.denizyuret.com] and collaborators.  Unlike gradient
generating compilers like Theano and TensorFlow which force users into
a restricted mini-language, Knet allows the definition and training of
machine learning models using the full power and expressivity of
Julia.  Models are defined by describing only the forward calculation
in plain Julia allowing helper functions, loops, conditionals,
recursion, closures, tuples and dictionaries, array indexing and
concatenation and almost everything else Julia offers. High
performance is achieved by combining automatic differentiation of most
of Julia with efficient GPU kernels and memory management. The
computations can be performed on the GPU by simply using KnetArray
instead of Array for parameters and data.  Check out the full
documentation [http://knet.rtfd.org] (in progress) and the
examples directory [https://github.com/denizyuret/Knet.jl/tree/master/examples] for
more information.
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Installation

You can install Knet using Pkg.add("Knet"). Some of the examples
use additional packages such as ArgParse, GZip, and JLD. These are not
required by Knet and are installed automatically when needed.  See the
detailed installation instructions [http://knet.readthedocs.org/en/latest/install.html#installation]
as well as the section on using Amazon AWS [http://knet.readthedocs.org/en/latest/install.html#using-amazon-aws]
to experiment with GPU machines on the cloud with pre-installed Knet
images.




Examples

In Knet, a machine learning model is defined using plain Julia code. A
typical model consists of a prediction and a loss function. The
prediction function takes model parameters and some input, returns the
prediction of the model for that input. The loss function measures how
bad the prediction is with respect to some desired output. We train a
model by adjusting its parameters to reduce the loss. In this section we
will see the prediction, loss, and training functions for five models:
linear regression, softmax classification, fully-connected,
convolutional and recurrent neural networks.


Linear regression

Here is the prediction function and the corresponding quadratic loss
function for a simple linear regression model:

predict(w,x) = w[1]*x .+ w[2]

loss(w,x,y) = sumabs2(y - predict(w,x)) / size(y,2)





The variable w is a list of parameters (it could be a Tuple,
Array, or Dict), x is the input and y is the desired
output. To train this model, we want to adjust its parameters to
reduce the loss on given training examples. The direction in the
parameter space in which the loss reduction is maximum is given by the
negative gradient of the loss. Knet uses the higher-order function
grad from AutoGrad.jl [https://github.com/denizyuret/AutoGrad.jl] to compute the gradient
direction:

using Knet

lossgradient = grad(loss)





Note that grad is a higher-order function that takes and returns
other functions. The lossgradient function takes the same arguments
as loss, e.g. dw = lossgradient(w,x,y). Instead of returning a
loss value, lossgradient returns dw, the gradient of the loss
with respect to its first argument w. The type and size of dw is
identical to w, each entry in dw gives the derivative of the
loss with respect to the corresponding entry in w. See @doc grad
for more information.

Given some training data = [(x1,y1),(x2,y2),...], here is how we can
train this model:

function train(w, data; lr=.1)
    for (x,y) in data
        dw = lossgradient(w, x, y)
        for i in 1:length(w)
            w[i] -= lr * dw[i]
        end
    end
    return w
end





We simply iterate over the input-output pairs in data, calculate the
lossgradient for each example, and move the parameters in the negative
gradient direction with a step size determined by the learning rate
lr.

[image: https://github.com/denizyuret/Knet.jl/blob/master/docs/images/housing.jpeg?raw=true]
 [https://archive.ics.uci.edu/ml/datasets/Housing]Let’s train this model on the
Housing [https://archive.ics.uci.edu/ml/datasets/Housing] dataset
from the UCI Machine Learning Repository.

julia> url = "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
julia> rawdata = readdlm(download(url))
julia> x = rawdata[:,1:13]'
julia> x = (x .- mean(x,2)) ./ std(x,2)
julia> y = rawdata[:,14:14]'
julia> w = Any[ 0.1*randn(1,13), 0 ]
julia> for i=1:10; train(w, [(x,y)]); println(loss(w,x,y)); end
366.0463078055053
...
29.63709385230451





The dataset has housing related information for 506 neighborhoods in
Boston from 1978. Each neighborhood is represented using 13 attributes
such as crime rate or distance to employment centers. The goal is to
predict the median value of the houses given in $1000’s. After
downloading, splitting and normalizing the data, we initialize the
parameters randomly and take 10 steps in the negative gradient
direction. We can see the loss dropping from 366.0 to 29.6. See
housing.jl [https://github.com/denizyuret/Knet.jl/blob/master/examples/housing.jl]
for more information on this example.

Note that grad was the only function used that is not in the Julia
standard library. This is typical of models defined in Knet.




Softmax classification

In this example we build a simple classification model for the
MNIST [http://yann.lecun.com/exdb/mnist] handwritten digit
recognition dataset. MNIST has 60000 training and 10000 test examples.
Each input x consists of 784 pixels representing a 28x28 image. The
corresponding output indicates the identity of the digit 0..9.

[image: https://github.com/denizyuret/Knet.jl/blob/master/docs/images/firsteightimages.jpg?raw=true]
 [https://jamesmccaffrey.wordpress.com/2014/06/10/working-with-the-mnist-image-recognition-data-set](image source [https://jamesmccaffrey.wordpress.com/2014/06/10/working-with-the-mnist-image-recognition-data-set])

Classification models handle discrete outputs, as opposed to regression
models which handle numeric outputs. We typically use the cross entropy
loss function in classification models:

function loss(w,x,ygold)
    ypred = predict(w,x)
    ynorm = ypred .- log(sum(exp(ypred),1))
    -sum(ygold .* ynorm) / size(ygold,2)
end





Other than the change of loss function, the softmax model is identical
to the linear regression model. We use the same predict, same
train and set lossgradient=grad(loss) as before. To see how well
our model classifies let’s define an accuracy function which returns
the percentage of instances classified correctly:

function accuracy(w, data)
    ncorrect = ninstance = 0
    for (x, ygold) in data
        ypred = predict(w,x)
        ncorrect += sum(ygold .* (ypred .== maximum(ypred,1)))
        ninstance += size(ygold,2)
    end
    return ncorrect/ninstance
end





Now let’s train a model on the MNIST data:

julia> include(Pkg.dir("Knet/examples/mnist.jl"))
julia> using MNIST: xtrn, ytrn, xtst, ytst, minibatch
julia> dtrn = minibatch(xtrn, ytrn, 100)
julia> dtst = minibatch(xtst, ytst, 100)
julia> w = Any[ -0.1+0.2*rand(Float32,10,784), zeros(Float32,10,1) ]
julia> println((:epoch, 0, :trn, accuracy(w,dtrn), :tst, accuracy(w,dtst)))
julia> for epoch=1:10
           train(w, dtrn; lr=0.5)
           println((:epoch, epoch, :trn, accuracy(w,dtrn), :tst, accuracy(w,dtst)))
       end

(:epoch,0,:trn,0.11761667f0,:tst,0.121f0)
(:epoch,1,:trn,0.9005f0,:tst,0.9048f0)
...
(:epoch,10,:trn,0.9196f0,:tst,0.9153f0)





Including mnist.jl loads the MNIST data, downloading it from the
internet if necessary, and provides a training set (xtrn,ytrn), test set
(xtst,ytst) and a minibatch utility which we use to rearrange the
data into chunks of 100 instances. After randomly initializing the
parameters we train for 10 epochs, printing out training and test set
accuracy at every epoch. The final accuracy of about 92% is close to the
limit of what we can achieve with this type of model. To improve further
we must look beyond linear models.




Multi-layer perceptron

A multi-layer perceptron, i.e. a fully connected feed-forward neural
network, is basically a bunch of linear regression models stuck together
with non-linearities in between.

[image: https://github.com/denizyuret/Knet.jl/blob/master/docs/images/neural_net2.jpeg?raw=true]
 [http://cs231n.github.io/neural-networks-1](image source [http://cs231n.github.io/neural-networks-1])

We can define a MLP by slightly modifying the predict function:

function predict(w,x)
    for i=1:2:length(w)-2
        x = max(0, w[i]*x .+ w[i+1])
    end
    return w[end-1]*x .+ w[end]
end





Here w[2k-1] is the weight matrix and w[2k] is the bias vector
for the k’th layer. max(0,a) implements the popular rectifier
non-linearity. Note that if w only has two entries, this is equivalent
to the linear and softmax models. By adding more entries to w, we can
define multi-layer perceptrons of arbitrary depth. Let’s define one with
a single hidden layer of 64 units:

w = Any[ -0.1+0.2*rand(Float32,64,784), zeros(Float32,64,1),
         -0.1+0.2*rand(Float32,10,64),  zeros(Float32,10,1) ]





The rest of the code is the same as the softmax model. We use the same
cross-entropy loss function and the same training script. The code for
this example is available in
mnist.jl [https://github.com/denizyuret/Knet.jl/blob/master/examples/mnist.jl].
The multi-layer perceptron does significantly better than the softmax
model:

(:epoch,0,:trn,0.10166667f0,:tst,0.0977f0)
(:epoch,1,:trn,0.9389167f0,:tst,0.9407f0)
...
(:epoch,10,:trn,0.9866f0,:tst,0.9735f0)








Convolutional neural network

To improve the performance further, we can use a convolutional neural
networks (CNN).  See the course notes [http://cs231n.github.io/convolutional-networks/] by Andrej
Karpathy for a good introduction to CNNs. We will implement the LeNet [http://yann.lecun.com/exdb/lenet] model which consists of two
convolutional layers followed by two fully connected layers.

[image: https://github.com/denizyuret/Knet.jl/blob/master/docs/images/le_net.png?raw=true]
 [http://www.dataiku.com/blog/2015/08/18/Deep_Learning.html](image source [http://www.dataiku.com/blog/2015/08/18/Deep_Learning.html])

Knet provides the conv4(w,x) and pool(x) functions for the
implementation of convolutional nets (see @doc conv4 and @doc
pool for details):

function predict(w,x0)
    x1 = pool(max(0, conv4(w[1],x0) .+ w[2]))
    x2 = pool(max(0, conv4(w[3],x1) .+ w[4]))
    x3 = max(0, w[5]*mat(x2) .+ w[6])
    return w[7]*x3 .+ w[8]
end





The weights for the convolutional net can be initialized as follows:

w = Any[ -0.1+0.2*rand(Float32,5,5,1,20),  zeros(Float32,1,1,20,1),
         -0.1+0.2*rand(Float32,5,5,20,50), zeros(Float32,1,1,50,1),
         -0.1+0.2*rand(Float32,500,800),   zeros(Float32,500,1),
         -0.1+0.2*rand(Float32,10,500),    zeros(Float32,10,1) ]





Currently convolution and pooling are only supported on the GPU for 4-D
and 5-D arrays. So we reshape our data and transfer it to the GPU along
with the parameters by converting them into KnetArrays (see
@doc KnetArray for more information):

dtrn = map(d->(KnetArray(reshape(d[1],(28,28,1,100))), KnetArray(d[2])), dtrn)
dtst = map(d->(KnetArray(reshape(d[1],(28,28,1,100))), KnetArray(d[2])), dtst)
w = map(KnetArray, w)





The training proceeds as before giving us even better results. The code
for the LeNet example can be found in
lenet.jl [https://github.com/denizyuret/Knet.jl/blob/master/examples/lenet.jl].

(:epoch,0,:trn,0.12215f0,:tst,0.1263f0)
(:epoch,1,:trn,0.96963334f0,:tst,0.971f0)
...
(:epoch,10,:trn,0.99553335f0,:tst,0.9879f0)








Recurrent neural network

In this section we will see how to implement a recurrent neural network
(RNN) in Knet. An RNN is a class of neural network where connections
between units form a directed cycle, which allows them to keep a
persistent state over time. This gives them the ability to process
sequences of arbitrary length one element at a time, while keeping track
of what happened at previous elements.

[image: https://github.com/denizyuret/Knet.jl/blob/master/docs/images/RNN-unrolled.png?raw=true]
 [http://colah.github.io/posts/2015-08-Understanding-LSTMs](image source [http://colah.github.io/posts/2015-08-Understanding-LSTMs])

As an example, we will build a character-level language model inspired
by “The Unreasonable Effectiveness of Recurrent Neural Networks” [http://karpathy.github.io/2015/05/21/rnn-effectiveness] from the
Andrej Karpathy blog. The model can be trained with different genres
of text, and can be used to generate original text in the same style.

It turns out simple RNNs are not very good at remembering things for a
very long time. Currently the most popular solution is to use a more
complicated unit like the Long Short Term Memory (LSTM). An LSTM
controls the information flow into and out of the unit using gates
similar to digital circuits and can model long term dependencies. See
Understanding LSTM
Networks [http://colah.github.io/posts/2015-08-Understanding-LSTMs]
by Christopher Olah for a good overview of LSTMs.

[image: https://github.com/denizyuret/Knet.jl/blob/master/docs/images/LSTM3-chain.png?raw=true]
 [http://colah.github.io/posts/2015-08-Understanding-LSTMs](image source [http://colah.github.io/posts/2015-08-Understanding-LSTMs])

The code below shows one way to define an LSTM in Knet. The first two
arguments are the parameters, the weight matrix and the bias vector. The
next two arguments hold the internal state of the LSTM: the hidden and
cell arrays. The last argument is the input. Note that for performance
reasons we lump all the parameters of the LSTM into one matrix-vector
pair instead of using separate parameters for each gate. This way we can
perform a single matrix multiplication, and recover the gates using
array indexing. We represent input, hidden and cell as row vectors
rather than column vectors for more efficient concatenation and
indexing. sigm and tanh are the sigmoid and the hyperbolic
tangent activation functions. The LSTM returns the updated state
variables hidden and cell.

function lstm(weight,bias,hidden,cell,input)
    gates   = hcat(input,hidden) * weight .+ bias
    hsize   = size(hidden,2)
    forget  = sigm(gates[:,1:hsize])
    ingate  = sigm(gates[:,1+hsize:2hsize])
    outgate = sigm(gates[:,1+2hsize:3hsize])
    change  = tanh(gates[:,1+3hsize:end])
    cell    = cell .* forget + ingate .* change
    hidden  = outgate .* tanh(cell)
    return (hidden,cell)
end





The LSTM has an input gate, forget gate and an output gate that control
information flow. Each gate depends on the current input value, and
the last hidden state hidden. The memory value cell is computed
by blending a new value change with the old cell value under the
control of input and forget gates. The output gate decides how much of
the cell is shared with the outside world.

If an input gate element is close to 0, the corresponding element in the
new input will have little effect on the memory cell. If a forget
gate element is close to 1, the contents of the corresponding memory
cell can be preserved for a long time. Thus the LSTM has the ability to
pay attention to the current input, or reminisce in the past, and it can
learn when to do which based on the problem.

To build a language model, we need to predict the next character in a
piece of text given the current character and recent history as encoded
in the internal state. The predict function below implements a
multi-layer LSTM model. s[2k-1:2k] hold the hidden and cell arrays
and w[2k-1:2k] hold the weight and bias parameters for the k’th LSTM
layer. The last three elements of w are the embedding matrix and the
weight/bias for the final prediction. predict takes the current
character encoded in x as a one-hot row vector, multiplies it with
the embedding matrix, passes it through a number of LSTM layers, and
converts the output of the final layer to the same number of dimensions
as the input using a linear transformation. The state variable s is
modified in-place.

function predict(w, s, x)
    x = x * w[end-2]
    for i = 1:2:length(s)
        (s[i],s[i+1]) = lstm(w[i],w[i+1],s[i],s[i+1],x)
        x = s[i]
    end
    return x * w[end-1] .+ w[end]
end





To train the language model we will use Backpropagation Through Time
(BPTT) which basically means running the network on a given sequence and
updating the parameters based on the total loss. Here is a function that
calculates the total cross-entropy loss for a given (sub)sequence:

function loss(param,state,sequence,range=1:length(sequence)-1)
    total = 0.0; count = 0
    atype = typeof(getval(param[1]))
    input = convert(atype,sequence[first(range)])
    for t in range
        ypred = predict(param,state,input)
        ynorm = logp(ypred,2) # ypred .- log(sum(exp(ypred),2))
        ygold = convert(atype,sequence[t+1])
        total += sum(ygold .* ynorm)
        count += size(ygold,1)
        input = ygold
    end
    return -total / count
end





Here param and state hold the parameters and the state of the
model, sequence and range give us the input sequence and a
possible range over it to process. We convert the entries in the
sequence to inputs that have the same type as the parameters one at a
time (to conserve GPU memory). We use each token in the given range as
an input to predict the next token. The average cross-entropy loss per
token is returned.

To generate text we sample each character randomly using the
probabilities predicted by the model based on the previous character:

function generate(param, state, vocab, nchar)
    index_to_char = Array(Char, length(vocab))
    for (k,v) in vocab; index_to_char[v] = k; end
    input = oftype(param[1], zeros(1,length(vocab)))
    index = 1
    for t in 1:nchar
        ypred = predict(param,state,input)
        input[index] = 0
        index = sample(exp(logp(ypred)))
        print(index_to_char[index])
        input[index] = 1
    end
    println()
end





Here param and state hold the parameters and state variables as
usual. vocab is a Char->Int dictionary of the characters that can be
produced by the model, and nchar gives the number of characters to
generate. We initialize the input as a zero vector and use predict
to predict subsequent characters. sample picks a random index based
on the normalized probabilities output by the model.

At this point we can train the network on any given piece of text (or
other discrete sequence). For efficiency it is best to minibatch the
training data and run BPTT on small subsequences. See
charlm.jl [https://github.com/denizyuret/Knet.jl/blob/master/examples/charlm.jl]
for details. Here is a sample run on ‘The Complete Works of William
Shakespeare’:

$ cd .julia/Knet/examples
$ wget http://www.gutenberg.org/files/100/100.txt
$ julia charlm.jl --data 100.txt --epochs 10 --winit 0.3 --save shakespeare.jld
... takes about 10 minutes on a GPU machine
$ julia charlm.jl --load shakespeare.jld --generate 1000

    Pand soping them, my lord, if such a foolish?
  MARTER. My lord, and nothing in England's ground to new comp'd.
    To bless your view of wot their dullst. If Doth no ape;
    Which with the heart. Rome father stuff
    These shall sweet Mary against a sudden him
    Upon up th' night is a wits not that honour,
    Shouts have sure?
  MACBETH. Hark? And, Halcance doth never memory I be thou what
    My enties mights in Tim thou?
  PIESTO. Which it time's purpose mine hortful and
    is my Lord.
  BOTTOM. My lord, good mine eyest, then: I will not set up.
  LUCILIUS. Who shall










Benchmarks

Each of the examples above was used as a benchmark to compare Knet
with other frameworks.  The table below shows the number of seconds it
takes to train a given model for a particular dataset, number of
epochs and minibatch size for Knet, Theano, Torch, Caffe and
TensorFlow.  Knet has comparable performance to other commonly used
frameworks.














	model
	dataset
	epochs
	batch
	Knet
	Theano
	Torch
	Caffe
	TFlow




	LinReg
	Housing
	10K
	506
	2.84
	1.88
	2.66
	2.35
	5.92


	Softmax
	MNIST
	10
	100
	2.35
	1.40
	2.88
	2.45
	5.57


	MLP
	MNIST
	10
	100
	3.68
	2.31
	4.03
	3.69
	6.94


	LeNet
	MNIST
	1
	100
	3.59
	3.03
	1.69
	3.54
	8.77


	CharLM
	Hiawatha
	1
	128
	2.25
	2.42
	2.23
	1.43
	2.86





The benchmarking was done on g2.2xlarge GPU instances on Amazon
AWS. The code is available at github [https://github.com/ozanarkancan/Knet8-Benchmarks] and as machine
image deep_AMI_v6 at AWS N.California. See the section on using
Amazon AWS [http://knet.readthedocs.org/en/latest/install.html#using-amazon-aws]
for more information.  The datasets are available online using the
following links: Housing [https://archive.ics.uci.edu/ml/datasets/Housing], MNIST [http://yann.lecun.com/exdb/mnist], Hiawatha [http://www.gutenberg.org/files/19/19.txt]. The MLP uses a single
hidden layer of 64 units.  CharLM uses a single layer LSTM language
model with embedding and hidden layer sizes set to 256 and trained
using BPTT with a sequence length of 100. Each dataset was minibatched
and transferred to GPU prior to benchmarking when possible.




Function reference

We implement machine learning models in Knet using regular Julia code
and the grad function.  Knet defines a few more utility functions
listed below.  See @doc <function> for full details.







	grad
	returns the gradient function.


	KnetArray
	constructs a GPU array.


	gradcheck
	compares gradients with numeric approximations.


	Knet.dir
	returns a path relative to Knet root.


	gpu
	determines which GPU Knet uses.


	relu
	returns max(0,x)


	sigm
	returns (1./(1+exp(-x)))


	invx
	returns (1./x)


	logp
	returns x .- log(sum(exp(x),[dims]))


	logsumexp
	returns log(sum(exp(x),[dims]))


	conv4
	executes convolutions or cross-correlations.


	pool
	replaces several adjacent values with their mean or maximum.


	mat
	reshapes its input into a two-dimensional matrix.


	update!
	updates the weight depending on the gradient and the parameters of the optimization method








Optimization methods

In the examples above, we used simple SGD as the optimization method and performed parameter updates manually using w[i] -= lr * dw[i].  The update! function provides more optimization methods and can be used in place of this manual update.  In addition to a weight array w[i] and its gradient dw[i], update! requires a third argument encapsulating the type, options, and state of the optimization method.  The constructors of the supported optimization methods are listed below.  See @doc Sgd etc. for full details.  Note that in general we need to keep one of these state variables per weight array, see optimizers.jl [https://github.com/denizyuret/Knet.jl/blob/master/examples/optimizers.jl] for example usage.







	Sgd
	encapsulates learning rate


	Momentum
	encapsulates learning rate, gamma and velocity


	Adam
	encapsualtes learning rate, beta1, beta2, epsilon, time, first and second moments


	Adagrad
	encapsualtes learning rate, epsilon and accumulated gradients (G)


	Adadelta
	encapsulates learning rate, rho, epsilon, accumulated gradients (G) and updates (delta)


	Rmsprop
	encapsulates learning rate, rho, epsilon and accumulated gradients (G)








Under the hood

Knet relies on the AutoGrad [https://github.com/denizyuret/AutoGrad.jl] package and the
KnetArray [https://github.com/denizyuret/Knet.jl/blob/master/src/karray.jl]
data type for its functionality and performance.  AutoGrad computes
the gradient of Julia functions and KnetArray implements high
performance GPU arrays with custom memory management. This section
briefly describes them.


AutoGrad

As we have seen, many common machine learning models can be expressed as differentiable programs that input parameters and data and output a scalar loss value.
The loss value measures how close the model predictions are to desired values with the given parameters.
Training a model can then be seen as an optimization problem: find the parameters that minimize the loss.
Typically, a gradient based optimization algorithm is used for computational efficiency: the direction in the parameter space in which the loss reduction is maximum is given by the negative gradient of the loss with respect to the parameters.
Thus gradient computations take a central stage in software frameworks for machine learning.
In this section I will briefly outline existing gradient computation techniques and motivate the particular approach taken by Knet.

Computation of gradients in computer models is performed by four main
methods (Baydin et al. 2015) [https://arxiv.org/abs/1502.05767]:


	manual differentiation (programming the derivatives)

	numerical differentiation (using finite difference approximations)

	symbolic differentiation (using expression manipulation)

	automatic differentiation (detailed below)



Manually taking derivatives and coding the result is labor intensive,
error-prone, and all but impossible with complex deep learning models.
Numerical differentiation is simple:
\(f'(x)=(f(x+\epsilon)-f(x-\epsilon))/(2\epsilon)\) but
impractical: the finite difference equation needs to be evaluated for
each individual parameter, of which there are typically many.  Pure
symbolic differentiation using expression manipulation, as implemented
in software such as Maxima, Maple, and Mathematica is impractical for
different reasons: (i) it may not be feasible to express a machine
learning model as a closed form mathematical expression, and (ii) the
symbolic derivative can be exponentially larger than the model itself
leading to inefficient run-time calculation.  This leaves us with
automatic differentiation.

Automatic differentiation is the idea of using symbolic derivatives
only at the level of elementary operations, and computing the gradient
of a compound function by applying the chain rule to intermediate
numerical results.  For example, pure symbolic differentiation of
\(\sin^2(x)\) could give us \(2\sin(x)\cos(x)\) directly.
Automatic differentiation would use the intermediate numerical values
\(x_1=\sin(x)\), \(x_2=x_1^2\) and the elementary derivatives
\(dx_2/dx_1=2x_1\), \(dx_1/dx=\cos(x)\) to compute the same
answer without ever building a full gradient expression.

To implement automatic differentiation the target function needs to be
decomposed into its elementary operations, a process similar to
compilation.  Most machine learning frameworks (such as Theano, Torch,
Caffe, Tensorflow and older versions of Knet prior to v0.8) compile
models expressed in a restricted mini-language into a computational
graph of elementary operations that have pre-defined derivatives.
There are two drawbacks with this approach: (i) the restricted
mini-languages tend to have limited support for high-level language
features such as conditionals, loops, helper functions, array
indexing, etc. (e.g. the infamous scan operation in Theano) (ii)
the sequence of elementary operations that unfold at run-time needs to
be known in advance, and they are difficult to handle when the
sequence is data dependent.

There is an alternative: high-level languages, like Julia and Python,
already know how to decompose functions into their elementary
operations.  If we let the users define their models directly in a
high-level language, then record the elementary operations during loss
calculation at run-time, the computational graph can be constructed
from the recorded operations. The cost of recording is not
prohibitive: The table below gives cumulative times for elementary
operations of an MLP with quadratic loss. Recording only adds 15% to
the raw cost of the forward computation. Backpropagation roughly
doubles the total time as expected.







	op
	secs




	a1=w1*x
	0.67


	a2=w2.+a1
	0.71


	a3=max(0,a2)
	0.75


	a4=w3*a3
	0.81


	a5=w4.+a4
	0.85


	a6=a5-y
	0.89


	a7=sumabs2(a6)
	1.18


	+recording
	1.33


	+backprop
	2.79





This is the approach taken by the popular autograd [https://github.com/HIPS/autograd] Python package and its Julia
port AutoGrad.jl [https://github.com/denizyuret/AutoGrad.jl] used
by Knet.  In these implementations g=grad(f) generates a gradient
function g, which takes the same inputs as the function f but
returns the gradient.  The gradient function g triggers recording
by boxing the parameters in a special data type and calls f.  The
elementary operations in f are overloaded to record their actions
and output boxed answers when their inputs are boxed. The sequence of
recorded operations is then used to compute gradients. In the Julia
AutoGrad package, derivatives can be defined independently for each
method of a function (determined by argument types) making full use of
Julia’s multiple dispatch.  New elementary operations and derivatives
can be defined concisely using Julia’s macro and meta-programming
facilities.  See AutoGrad.jl [https://github.com/denizyuret/AutoGrad.jl] for details.




KnetArray

GPUs have become indispensable for training large deep learning
models.  Even the small examples implemented here run up to 17x faster
on the GPU compared to the 8 core CPU architecture we use for
benchmarking.  However GPU implementations have a few potential
pitfalls: (i) GPU memory allocation is slow, (ii) GPU-RAM memory
transfer is slow, (iii) reduction operations (like sum) can be
very slow unless implemented properly (See Optimizing Parallel
Reduction in CUDA [http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf]).

Knet implements KnetArray [https://github.com/denizyuret/Knet.jl/blob/master/src/karray.jl]
as a Julia data type that wraps GPU array pointers.  KnetArray is
based on the more standard CudaArray [https://github.com/JuliaGPU/CUDArt.jl] with a few important
differences: (i) KnetArrays have a custom memory manager, similar to
ArrayFire [http://arrayfire.com], which reuse pointers garbage
collected by Julia to reduce the number of GPU memory
allocations, (ii) array ranges (e.g. a[:,3:5]) are handled as
views with shared pointers instead of copies when possible, and (iii)
a number of custom CUDA kernels written for KnetArrays implement
element-wise, broadcasting, and scalar and vector reduction operations
efficiently.  As a result Knet allows users to implement their models
using high-level code, yet be competitive in performance with other
frameworks as demonstrated in the benchmarks section.






Contributing

Knet is an open-source project and we are always open to new
contributions: bug reports and fixes, feature requests and
contributions, new machine learning models and operators, inspiring
examples, benchmarking results are all welcome. If you need help or
would like to request a feature, please consider joining the
knet-users [https://groups.google.com/forum/#!forum/knet-users]
mailing list. If you find a bug, please open a GitHub
issue [https://github.com/denizyuret/Knet.jl/issues]. If you would
like to contribute to Knet development, check out the
knet-dev [https://groups.google.com/forum/#!forum/knet-dev] mailing
list and tips for
developers [http://knet.readthedocs.org/en/latest/install.html#tips-for-developers].
If you use Knet in your own work, here is a paper [http://www2.denizyuret.com/bib/yuret/yuret2016knet/knet-beginning-deep%20%283%29.pdf] you can cite:

@inproceedings{knet2016mlsys,
  author={Yuret, Deniz},
  title={Knet: beginning deep learning with 100 lines of Julia},
  year={2016},
  booktitle={Machine Learning Systems Workshop at NIPS 2016}
}
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Backpropagation


Note

Concepts: supervised learning, training data, regression,
squared error, linear regression, stochastic gradient descent



Arthur Samuel, the author of the first self-learning checkers program,
defined machine learning as a “field of study that gives computers the
ability to learn without being explicitly programmed”.  This leaves
the definition of learning a bit circular.  Tom M. Mitchell provided a
more formal definition: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance
measure P if its performance at tasks in T, as measured by P, improves
with experience E,” where the task, the experience, and the
performance measure are to be specified based on the problem.

We will start with supervised learning, where the task is to
predict the output of an unknown system given its input, and the
experience consists of a set of example input-output pairs, also known
as the training data.  When the outputs are numeric such problems
are called regression.  In linear regression we use a linear
function as our model:


\[\hat{y} = W x + b\]

Here \(x\) is the model input, \(\hat{y}\) is the model
output, \(W\) is a matrix of weights, and \(b\) is a vector of
biases.  By adjusting the parameters of this model, i.e. the weights
and the biases, we can make it compute any linear function of
\(x\).

“All models are wrong, but some models are useful.” George Box
famously said.  We do not necessarily know that the system whose
output we are trying to predict is governed by a linear
relationship. All we know is a finite number of input-output examples:


\[\mathcal{D}=\{(x_1,y_1),\ldots,(x_N,y_N)\}\]

It is just that we have to start model building somewhere and the set
of all linear functions is a good place to start for now.

A commonly used performance measure in regression problems is the
squared error, i.e. the average squared difference between the
actual output values and the ones predicted by the model.  So our goal
is to find model parameters that minimize the squared error:


\[\arg\min_{W,b} \frac{1}{N} \sum_{n=1}^N \| \hat{y}_n - y_n \|^2\]

Where \(\hat{y}_n = W x_n + b\) denotes the output predicted by
the model for the \(n\) th example.

There are several methods to find the solution to the problem of
minimizing squared error.  Here we will present the stochastic
gradient descent (SGD) method because it generalizes well to more
complex models.  In SGD, we take the training examples one at a time
(or in small groups called minibatches), compute the gradient of the
error with respect to the parameters, and move the parameters a small
step in the direction that will decrease the error.  First some notes
on the math.


Partial derivatives

When we have a function with several inputs and one output, we can
look at how the function value changes in response to a small change
in one of its inputs holding the rest fixed.  This is called a partial
derivative.  Let us consider the squared error for the \(n\) th
input as an example:


\[J = \| W x_n + b - y_n \|^2\]

So the partial derivative \(\partial J / \partial w_{ij}\) would
tell us how many units \(J\) would move if we moved \(w_{ij}\)
in \(W\) one unit (at least for small enough units).  Here is a
more graphical representation:

[image: _images/linregforw.jpg]
In this figure, it is easier to see that the machinery that generates
\(J\) has many “inputs”.  In particular we can talk about how
\(J\) is effected by changing parameters \(W\) and \(b\),
as well as changing the input \(x\), the model output
\(\hat{y}\), the desired output \(y\), or intermediate values
like \(z\) or \(r\).  So partial derivatives like
\(\partial J / \partial x_i\) or \(\partial J / \partial
\hat{y}_j\) are fair game and tell us how \(J\) would react in
response to small changes in those quantities.




Chain rule

The chain rule allows us to calculate partial derivatives in terms of
other partial derivatives, simplifying the overall computation.  We
will go over it in some detail as it forms the basis of the
backpropagation algorithm.  For now let us assume that each of the
variables in the above example are scalars.  We will start by looking
at the effect of \(r\) on \(J\) and move backward from there.
Basic calculus tells us that:


\[\begin{split}J = r^2 \\
{\partial J}/{\partial r} = 2r\end{split}\]

Thus, if \(r=5\) and we decrease \(r\) by a small
\(\epsilon\), the squared error \(J\) will go down by
\(10\epsilon\).  Now let’s move back a step and look at
\(\hat{y}\):


\[\begin{split}r = \hat{y} - y \\
{\partial r}/{\partial \hat{y}} = 1\end{split}\]

So how much effect will a small \(\epsilon\) decrease in
\(\hat{y}\) have on \(J\) when \(r=5\)?  Well, when
\(\hat{y}\) goes down by \(\epsilon\), so will \(r\),
which means \(J\) will go down by \(10\epsilon\) again.  The
chain rule expresses this idea:


\[\frac{\partial J}{\partial\hat{y}} =
\frac{\partial J}{\partial r}
\frac{\partial r}{\partial\hat{y}}
= 2r\]

Going back further, we have:


\[\begin{split}\hat{y} = z + b \\
{\partial \hat{y}}/{\partial b} = 1 \\
{\partial \hat{y}}/{\partial z} = 1 \\\end{split}\]

Which means \(b\) and \(z\) have the same effect on \(J\)
as \(\hat{y}\) and \(r\), i.e. decreasing them by
\(\epsilon\) will decrease \(J\) by \(2r\epsilon\) as
well.  Finally:


\[\begin{split}z = w x \\
{\partial z}/{\partial x} = w \\
{\partial z}/{\partial w} = x\end{split}\]

This allows us to compute the effect of \(w\) on \(J\) in
several steps: moving \(w\) by \(\epsilon\) will move
\(z\) by \(x\epsilon\), \(\hat{y}\) and \(r\) will
move exactly the same amount because their partials with \(z\) are
1, and finally since \(r\) moves by \(x\epsilon\), \(J\)
will move by \(2rx\epsilon\).


\[\frac{\partial J}{\partial w} =
\frac{\partial J}{\partial r}
\frac{\partial r}{\partial \hat{y}}
\frac{\partial \hat{y}}{\partial z}
\frac{\partial z}{\partial w}
= 2rx\]

We can represent this process of computing partial derivatives as
follows:

[image: _images/linregback.jpg]
Note that we have the same number of boxes and operations, but all the
arrows are reversed.  Let us call this the backward pass, and the
original computation in the previous picture the forward pass.  Each
box in this backward-pass picture represents the partial derivative
for the corresponding box in the previous forward-pass picture.  Most
importantly, each computation is local: each operation takes the
partial derivative of its output, and multiplies it with a factor that
only depends on the original input/output values to compute the
partial derivative of its input(s).  In fact we can implement the
forward and backward passes for the linear regression model using the
following local operations:

[image: _images/sqnorm.jpg]
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Multiple dimensions

Let’s look at the case where the input and output are not scalars but
vectors.  In particular assume that \(x \in \mathbb{R}^D\) and
\(y \in \mathbb{R}^C\).  This makes \(W \in
\mathbb{R}^{C\times D}\) a matrix and \(z,b,\hat{y},r\) vectors in
\(\mathbb{R}^C\).  During the forward pass, \(z=Wx\) operation
is now a matrix-vector product, the additions and subtractions are
elementwise operations.  The squared error \(J=\|r\|^2=\sum
r_i^2\) is still a scalar.  For the backward pass we ask how much each
element of these vectors or matrices effect \(J\).  Starting with
\(r\):


\[\begin{split}J = \sum r_i^2 \\
{\partial J}/{\partial r_i} = 2r_i\end{split}\]

We see that when \(r\) is a vector, the partial derivative of each
component is equal to twice that component.  If we put these partial
derivatives together in a vector, we obtain a gradient vector:


\[\nabla_r J
\equiv \langle \frac{\partial J}{\partial r_1}, \cdots, \frac{\partial J}{\partial r_C} \rangle
= \langle 2 r_1, \ldots, 2 r_C \rangle
= 2\vec{r}\]

The addition, subtraction, and square norm operations work the same
way as before except they act on each element.  Moving back through
the elementwise operations we see that:


\[\nabla_r J = \nabla_\hat{y} J = \nabla_b J = \nabla_z J = 2\vec{r}\]

For the operation \(z=Wx\), a little algebra will show you that:


\[\begin{split}\nabla_W J = \nabla_z J \cdot x^T \\
\nabla_x J = W^T \cdot \nabla_z J\end{split}\]

Note that the gradient of a variable has the same shape as the
variable itself.  In particular \(\nabla_W J\) is a \(C\times
D\) matrix.  Here is the graphical representation for matrix
multiplication:

[image: _images/dot.jpg]



Multiple instances

We will typically process data multiple instances at a time for
efficiency.  Thus, the input \(x\) will be a \(D\times N\)
matrix, and the output \(y\) will be a \(C\times N\) matrix,
the \(N\) columns representing \(N\) different instances.
Please verify to yourself that the forward and backward operations as
described above handle this case without much change: the elementwise
operations act on the elements of the matrices just like vectors, and
the matrix multiplication and its gradient remains the same.  Here is
a picture of the forward and backward passes:

[image: _images/batchforwback.jpg]
The only complication is at the addition of the bias vector.  In the
batch setting, we are adding \(b\in\mathbb{R}^{C\times 1}\) to
\(z\in\mathbb{R}^{C\times N}\).  This will be a broadcasting
operation, i.e. the vector \(b\) will be added to each column of
the matrix \(z\) to get \(\hat{y}\).  In the backward pass,
we’ll need to add the columns of \(\nabla_\hat{y} J\) to get the
gradient \(\nabla_b J\).




Stochastic Gradient Descent

The gradients calculated by backprop, \(\nabla_w J\) and
\(\nabla_b J\), tell us how much small changes in corresponding
entries in \(w\) and \(b\) will effect the error (for the last
instance, or minibatch). Small steps in the gradient direction will
increase the error, steps in the opposite direction will decrease the
error.

In fact, we can show that the gradient is the direction of steepest
ascent.  Consider a unit vector \(v\) pointing in some arbitrary
direction.  The rate of change in this direction is given by the
projection of \(v\) onto the gradient, i.e. their dot product
\(\nabla J \cdot v\).  What direction maximizes this dot product?
Recall that:


\[\nabla J \cdot v = | \nabla J |\,\, | v | \cos(\theta)\]

where \(\theta\) is the angle between \(v\) and the gradient
vector.  \(\cos(\theta)\) is maximized when the two vectors point
in the same direction.  So if you are going to move a fixed (small)
size step, the gradient direction gives you the biggest bang for the
buck.

This suggests the following update rule:


\[w \leftarrow w - \nabla_w J\]

This is the basic idea behind Stochastic Gradient Descent (SGD): Go
over the training set instance by instance (or minibatch by
minibatch). Run the backpropagation algorithm to calculate the error
gradients. Update the weights and biases in the opposite direction of
these gradients. Rinse and repeat...

Over the years, people have noted many subtle problems with this
approach and suggested improvements:

Step size: If the step sizes are too small, the SGD algorithm will
take too long to converge. If they are too big it will overshoot the
optimum and start to oscillate. So we scale the gradients with an
adjustable parameter called the learning rate \(\eta\):


\[w \leftarrow w - \eta \nabla_w J\]

Step direction: More importantly, it turns out the gradient (or
its opposite) is often NOT the direction you want to go in order to
minimize error. Let us illustrate with a simple picture:

[image: _images/longnarrowvalley.png]
The figure on the left shows what would happen if you stood on one
side of the long narrow valley and took the direction of steepest
descent: this would point to the other side of the valley and you
would end up moving back and forth between the two sides, instead of
taking the gentle incline down as in the figure on the right.  The
direction across the valley has a high gradient but also a high
curvature (second derivative) which means the descent will be sharp
but short lived.  On the other hand the direction following the bottom
of the valley has a smaller gradient and low curvature, the descent
will be slow but it will continue for a longer distance.  Newton’s
method [https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization] adjusts the direction taking into account the second
derivative:

[image: _images/330px-Newton_optimization_vs_grad_descent.svg.png]
In this figure, the two axes are w1 and w2, two parameters of our
network, and the contour plot represents the error with a minimum at
x. If we start at x0, the Newton direction (in red) points almost
towards the minimum, whereas the gradient (in green), perpendicular to
the contours, points to the right.

Unfortunately Newton’s direction is expensive to compute. However, it
is also probably unnecessary for several reasons: (1) Newton gives us
the ideal direction for second degree objective functions, which our
objective function almost certainly is not, (2) The error function
whose gradient backprop calculated is the error for the last
minibatch/instance only, which at best is a very noisy approximation
of the real error function, thus we shouldn’t spend too much effort
trying to get the direction exactly right.

So people have come up with various approximate methods to improve the
step direction. Instead of multiplying each component of the gradient
with the same learning rate, these methods scale them separately using
their running average (momentum, Nesterov), or RMS (Adagrad, Rmsprop).
Some even cap the gradients at an arbitrary upper limit (gradient
clipping) to prevent unstabilities.

You may wonder whether these methods still give us directions that
consistently increase/decrease the objective function.  If we do not
insist on the maximum increase, any direction whose components have
the same signs as the gradient vector is guaranteed to increase the
function (for short enough steps).  The reason is again given by the
dot product \(\nabla J \cdot v\).  As long as these two vectors
carry the same signs in the same components, the dot product, i.e. the
rate of change along \(v\), is guaranteed to be positive.

Minimize what? The final problem with gradient descent, other than
not telling us the ideal step size or direction, is that it is not
even minimizing the right objective! We want small error on never
before seen test data, not just on the training data. The truth is, a
sufficiently large model with a good optimization algorithm can get
arbitrarily low error on any finite training data (e.g. by just
memorizing the answers). And it can typically do so in many different
ways (typically many different local minima for training error in
weight space exist). Some of those ways will generalize well to unseen
data, some won’t. And unseen data is (by definition) not seen, so how
will we ever know which weight settings will do well on it?

There are at least three ways people deal with this problem: (1) Bayes
tells us that we should use all possible models and weigh their
answers by how well they do on training data (see Radford Neal’s fbm),
(2) New methods like dropout that add distortions and noise to inputs,
activations, or weights during training seem to help generalization,
(3) Pressuring the optimization to stay in one corner of the weight
space (e.g. L1, L2, maxnorm regularization) helps generalization.
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Softmax Classification


Note

Concepts: classification, likelihood, softmax, one-hot vectors,
zero-one loss, conditional likelihood, MLE, NLL, cross-entropy loss



We will introduce classification problems and some simple models for
classification.


Classification

Classification problems are supervised machine learning problems where
the task is to predict a discrete class for a given input (unlike
regression where the output was numeric).  A typical example is
handwritten digit recognition where the input is an image of a
handwritten digit, and the output is one of the discrete categories
\(\{0, \ldots, 9\}\).  As in all supervised learning problems the
training data consists of a set of example input-output pairs.




Likelihood

A natural objective in classification could be to minimize the number
of misclassified examples in the training data.  This number is known
as the zero-one loss.  However the zero-one loss has some
undesirable properties for training: in particular it is
discontinuous.  A small change in one of the parameters either has no
effect on the loss, or can turn one or more of the predictions from
false to true or true to false, causing a discontinuous jump in the
objective.  This means the gradient of the zero-one loss with respect
to the parameters is either undefined or not helpful.

A more commonly used objective for classification is conditional
likelihood: the probability of the observed data given our model and
the inputs.  Instead of predicting a single class for each instance,
we let our model predict a probability distribution over all classes.
Then we adjust the weights of the model to increase the probabilities
for the correct classes and decrease it for others.  This is also
known as the maximum likelihood estimation (MLE).

Let \(\mathcal{X}=\{x_1,\ldots,x_N\}\) be the inputs in the
training data, \(\mathcal{Y}=\{y_1,\ldots,y_N\}\) be the correct
classes and \(\theta\) be the parameters of our model.
Conditional likelihood is:


\[L(\theta) = P(\mathcal{Y}|\mathcal{X},\theta)
= \prod_{n=1}^N P(y_n|x_n,\theta)\]

The second equation assumes that the data instances were generated
independently.  We usually work with log likelihood for mathematical
convenience: log is a monotonically increasing function, so maximizing
likelihood is the same as maximizing log likelihood:


\[\ell(\theta) = \log P(\mathcal{Y}|\mathcal{X},\theta)
= \sum_{n=1}^N \log P(y_n|x_n,\theta)\]

We will typically use the negative of \(\ell\) (machine learning
people like to minimize), which is known as negative log
likelihood (NLL), or cross-entropy loss.




Softmax

The linear regression model we have seen earlier produces unbounded
\(y\) values.  To go from arbitrary values
\(y\in\mathbb{R}^C\) to normalized probability estimates
\(p\in\mathbb{R}^C\) for a single instance, we use exponentiation
and normalization:


\[p_i = \frac{\exp y_i}{\sum_{c=1}^C \exp y_c}\]

where \(i,c\in\{1,\ldots,C\}\) range over classes, and \(p_i,
y_i, y_c\) refer to class probabilities and values for a single
instance.  This is called the softmax function.  A model that
converts the unnormalized values at the end of a linear regression to
normalized probabilities for classification is called the softmax
classifier.

We need to figure out the backward pass for the softmax function.  In
other words if someone gives us the gradient of some objective
\(J\) with respect to the class probabilities \(p\) for a
single training instance, what is the gradient with respect to the
input of the softmax \(y\)?  First we’ll find the partial
derivative of one component of \(p\) with respect to one component
of \(y\):


\[\begin{split}\frac{\partial p_i}{\partial y_j}
&=& \frac{[i=j] \exp y_i \sum_c \exp y_c - \exp y_i \exp y_j}
         {(\sum_c \exp y_c)^2} \\
&=& \,[i=j]\, p_i - p_i p_j\end{split}\]

The square brackets are the Iverson bracket [https://en.wikipedia.org/wiki/Iverson_bracket] notation,
i.e. \([A]\) is 1 if \(A\) is true, and 0 if \(A\) is
false.

Note that a single entry in \(y\) effects \(J\) through
multiple paths (\(y_j\) contributes to the denominator of every
\(p_i\)), and these effects need to be added for \(\partial
J/\partial y_j\):


\[\frac{\partial J}{\partial y_j}
= \sum_{i=1}^C \frac{\partial J}{\partial p_i}
\frac{\partial p_i}{\partial y_j}\]




One-hot vectors

When using a probabilistic classifier, it is convenient to represent
the desired output as a one-hot vector, i.e. a vector in which all
entries are ‘0’ except a single ‘1’.  If the correct class is
\(c\in\{1,\ldots,C\}\), we represent this with a one-hot vector
\(p\in\mathbb{R}^C\) where \(p_c = 1\) and \(p_{i\neq c}
= 0\).  Note that \(p\) can be viewed as a probability vector where
all the probability mass is concentrated at c.  This representation
also allows us to have probabilistic targets where there is not a
single answer but target probabilities associated with each answer.
Given a one-hot (or probabilistic) \(p\), and the model prediction
\(\hat{p}\), we can write the log-likelihood for a single instance
as:


\[\ell = \sum_{c=1}^C p_c \log \hat{p}_c\]




Gradient of log likelihood

To compute the gradient for log likelihood, we need to make the
normalization of \(\hat{p}\) explicit:


\[\begin{split}\ell &=& \sum_c p_c \log \frac{\hat{p}_c}{\sum_k\hat{p}_k} \\
&=& \sum_c p_c \log{\hat{p}_c} - \sum_c p_c \log \sum_k\hat{p}_k \\
&=& (\sum_c p_c \log{\hat{p}_c}) - (\log \sum_k\hat{p}_k) \\
\frac{\partial \ell}{\partial \hat{p}_i} &=&
\frac{p_i}{\hat{p}_i} - \frac{1}{\sum_k\hat{p}_k}
= \frac{p_i}{\hat{p}_i} - 1\end{split}\]

The gradient with respect to unnormalized y takes a particularly
simple form:


\[\begin{split}\frac{\partial\ell}{\partial y_j}
&=& \sum_i \frac{\partial\ell}{\partial \hat{p}_i}
\frac{\partial \hat{p}_i}{\partial y_j} \\
&=& \sum_i (\frac{p_i}{\hat{p}_i} - 1)(\,[i=j]\, \hat{p}_i - \hat{p}_i \hat{p}_j) \\
&=& \, p_j - \hat{p}_j \\
\nabla\ell &=& \, p - \hat{p}\end{split}\]

The gradient with respect to \(\hat{p}\) causes numerical overflow
when some components of \(\hat{p}\) get very small.  In practice
we usually skip that and directly compute the gradient with respect to
\(y\) which is numerically stable.




MNIST example

Let’s try our softmax classifier on the MNIST [http://yann.lecun.com/exdb/mnist] handwritten digit
classification dataset.  Here are the first 8 images from MNIST, the goal is
to look at the pixels and classify each image as one of the digits
0-9:

[image: _images/firsteightimages.jpg]
See training-with-minibatches for more information about the
MNIST task, loading and minibatching data, and simple train and test
scripts.

Here is the softmax classifier in Julia:

function softmax(w,x,ygold)
    ypred = w[1] * x .+ w[2]
    return softloss(ygold, ypred)
end

function softloss(ygold, ypred)
    ynorm = ypred .- log(sum(exp(ypred),1))
    -sum(ygold .* ynorm) / size(ygold,2)
end

softmax_gradient = grad(softmax)





Let us train our model for 100 epochs and print out the classification
error on the training and test sets after every epoch (see the full
example in Pkg.dir(“Knet/examples/mnist.jl”)):

w = Any[0.1*randn(10,784), zeros(10,1)]
for epoch=1:nepochs
    for (x,y) in dtrn  # dtrn is a list of minibatches
        g = softmax_gradient(w, x, y)
        for i in 1:length(w)
            w[i] -= lr * g[i]
        end
    end
    # Print accuracy
end





(:epoch,0,:trn,0.1135,:tst,0.1097)
(:epoch,1,:trn,0.9008666666666667,:tst,0.9048)
...
(:epoch,99,:trn,0.9274833333333333,:tst,0.9177)
(:epoch,100,:trn,0.92755,:tst,0.9176)





Here is a plot of the losses vs training epochs:

[image: _images/mnist_softmax.png]
We can observe a few things.  First the training losses are better
than the test losses.  This means there is some overfitting.
Second, it does not look like the training loss is going down to zero.
This means the softmax model is not flexible enough to fit the
training data exactly.




Representational power

So far we have seen how to create a machine learning model as a
differentiable program (linear regression, softmax classification)
whose parameters can be adjusted to hopefully imitate whatever process
generated our training data.  A natural question to ask is whether a
particular model can behave like any system we want (given the right
parameters) or whether there is a limit to what it can represent.

It turns out the softmax classifier is quite limited in its
representational power: it can only represent linear classification
boundaries.  To show this, remember the form of the softmax classifier
which gives the probability of the i’th class as:


\[\begin{split}p_i &=& \frac{\exp y_i}{\sum_{c=1}^C \exp y_c} \\\end{split}\]

where \(y_i\) is a linear function of the input \(x\).  Note
that \(p_i\) is a monotonically increasing function of
\(y_i\), so for two classes \(i\) and \(j\), \(p_i >
p_j\) if \(y_i > y_j\).  The boundary between two classes \(i\)
and \(j\) is the set of inputs for which the probability of the
two classes are equal:


\[\begin{split}p_i &=& p_j \\
y_i &=& y_j \\
w_i x + b_i &=& w_j x + b_j \\
(w_i - w_j) x + (b_i - b_j) &=& 0\end{split}\]

where \(w_i, b_i\) refer to the i’th row of \(w\) and
\(b\). This is a linear equation, i.e. the border between two
classes will always be linear in the input space with the softmax
classifier:

[image: _images/linear-boundary.png]
In the MNIST example, the relation between the pixels and the digit
classes is unlikely to be this simple.  That is why we are stuck at
6-7% training error.  To get better results we need more powerful
models.
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Multilayer Perceptrons

In this section we create multilayer perceptrons by stacking multiple
linear layers with non-linear activation functions in between.


Stacking linear classifiers is useless

We could try stacking multiple linear classifiers together.  Here is a
two layer model:

function multilinear(w, x, ygold)
    y1 = w[1] * x  .+ w[2]
    y2 = w[3] * y1 .+ w[4]
    return softloss(ygold, y2)
end





Note that instead of using y1 as our prediction, we used it as
input to another linear classifier.  Intermediate arrays like y1
are known as hidden layers because their contents are not directly
visible outside the model.

If you experiment with this model (I suggest using a smaller learning
rate, e.g. 0.01), you will see that it performs similarly to the
original softmax model.  The reason is simple to see if we write the
function computed in mathematical notation and do some algebra:


\[\begin{split}\hat{p} &=& \mbox{soft}(W_2 (W_1 x + b_1) + b_2) \\
&=& \mbox{soft}((W_2 W_1)\, x + W_2 b_1 + b_2) \\
&=& \mbox{soft}(W x + b)\end{split}\]

where \(W=W_2 W_1\) and \(b=W_2 b_1 + b_2\).  In other words,
we still have a linear classifier!  No matter how many linear
functions you put on top of each other, what you get at the end is
still a linear function.  So this model has exactly the same
representation power as the softmax model.  Unless, we add a simple
instruction...




Introducing nonlinearities

Here is a slightly modified version of the two layer model:

function mlp(w, x, ygold)
    y1 = relu(w[1] * x .+ w[2])
    y2 = w[3] * y1 .+ w[4]
    return softloss(ygold, y2)
end





MLP in mlp stands for multilayer perceptron which is one name
for this type of model.  The only difference with the previous example
is the relu() function we introduced in the first line.  This is
known as the rectified linear unit (or rectifier), and is a simple
function defined by relu(x)=max(x,0) applied elementwise to the
input array.  So mathematically what we are computing is:


\[\begin{split}\hat{p} &=& \mbox{soft}(W_2\, \mbox{relu}(W_1 x + b_1) + b_2) \\\end{split}\]

This cannot be reduced to a linear function, which may not seem like a
big difference but what a difference it makes to the model!  Here are
the learning curves for mlp using a hidden layer of size 64:

[image: _images/mnist_mlp.png]
Here are the learning curves for the linear model softmax
plotted at the same scale for comparison:

[image: _images/mnist_softmax2.png]
We can observe a few things: using MLP instead of a linear model
brings the training error from 6.7% to 0 and the test error from 7.5%
to 2.0%.  There is still overfitting: the test error is not as good as
the training error, but the model has no problem classifying the training
data (all 60,000 examples) perfectly!




Types of nonlinearities (activation functions)

The functions we throw between linear layers to break the linearity
are called nonlinearities or activation functions.  Here are
some activation functions that have been used as nonlinearities:

[image: _images/actf.png]
The step functions were the earliest activation functions used in the
perceptrons of 1950s.  Unfortunately they do not give a useful
derivative that can be used for training a multilayer model.  Sigmoid
and tanh (sigm and tanh in Knet) became popular in 1980s as
smooth approximations to the step functions and allowed the
application of the backpropagation algorithm.  Modern activation
functions like relu and maxout are piecewise linear.  They are
computationally inexpensive (no exponentials), and perform well in
practice.  We are going to use relu in most of our models.  Here is
the backward passes for sigmoid, tanh, and relu:








	function
	forward
	backward




	sigmoid
	\(y = \frac{1}{1+e^{-x}}\)
	\(\nabla_x J = y\,(1-y) \nabla_y J\)


	tanh
	\(y = \frac{e^x-e^{-x}}{e^x+e^{-x}}\)
	\(\nabla_x J = (1+y)(1-y) \nabla_y J\)


	relu
	\(y = \max(0,x)\)
	\(\nabla_x J = [ y \geq 0 ] \nabla_y J\)





See (Karpathy, 2016, Ch 1) [http://cs231n.github.io/neural-networks-1] for more on activation functions and MLP
architecture.




Representational power

You might be wondering whether relu had any special properties or
would any of the other nonlinearities be sufficient.  Another question
is whether there are functions multilayer perceptrons cannot represent
and if so whether adding more layers or different types of functions
would increase their representational power.  The short answer is that
a two layer model can approximate any function if the hidden layer is
large enough, and can do so with any of the nonlinearities introduced
in the last section.  Multilayer perceptrons are universal function
approximators!

We said that a two-layer MLP is a universal function approximator
given enough hidden units.  This brings up the questions of
efficiency: how many hidden units / parameters does one need to
approximate a given function and whether the number of units depends
on the number of hidden layers.  The efficiency is important both
computationally and statistically: models with fewer parameters can be
evaluated faster, and can learn from fewer examples (ref?).  It turns
out there are functions whose representations are exponentially more
expensive in a shallow network compared to a deeper network (see
(Nielsen, 2016, Ch 5) [http://neuralnetworksanddeeplearning.com/chap5.html] for a discussion).  Recent winners of image
recognition contests use networks with dozens of convolutional layers.
The advantage of deeper MLPs is empirically less clear, but you should
experiment with the number of units and layers using a development set
when starting a new problem.

Please see (Nielsen, 2016, Ch 4) [http://neuralnetworksanddeeplearning.com/chap4.html] for an intuitive explanation of
the universality result and (Bengio et al. 2016, Ch 6.4) [http://www.deeplearningbook.org/contents/mlp.html] for a more
in depth discussion and references.




Matrix vs Neuron Pictures

So far we have introduced multilayer perceptrons (aka artificial
neural networks) using matrix operations.  You may be wondering why
people call them neural networks and be confused by terms like layers
and units.  In this section we will give the correspondence between
the matrix view and the neuron view.  Here is a schematic of a
biological neuron (figures from (Karpathy, 2016, Ch 1) [http://cs231n.github.io/neural-networks-1]):

[image: _images/neuron.png]
A biological neuron is a complex organism supporting thousands of
chemical reactions simultaneously under the regulation of thousands of
genes, communicating with other neurons through electrical and
chemical pathways involving dozens of different types of
neurotransmitter molecules.  We assume (do not know for sure) that the
main mechanism of communication between neurons is electrical spike
trains that travel from the axon of the source neuron, through
connections called synapses, into dendrites of target neurons.  We
simplify this picture further representing the strength of the spikes
and the connections with simple numbers to arrive at this cartoon
model:


[image: _images/neuron_model.jpeg]


This model is called an artificial neuron, a perceptron, or simply a
unit in neural network literature.  We know it as the softmax
classifier.

When a number of these units are connected in layers, we get a
multilayer perceptron.  When counting layers, we ignore the input
layer.  So the softmax classifier can be considered a one layer neural
network.  Here is a neural network picture and the corresponding
matrix picture for a two layer model:

[image: _images/neural_net.jpeg]
[image: _images/mlp2.jpg]
Here is a neural network picture and the corresponding matrix picture
for a three layer model:

[image: _images/neural_net2.jpeg]
[image: _images/mlp3.jpg]
We can use the following elementwise notation for the neural network
picture (e.g. similar to the one used in UFLDL [http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks]):


\[x_i^{(l)} = f(b_i^{(l)} + \sum_j w_{ij}^{(l)} x_j^{(l-1)})\]

Here \(x_i^{(l)}\) refers to the activation of the \(i\) th
unit in \(l\) th layer.  We are counting the input as the 0’th
layer.  \(f\) is the activation function, \(b_i^{(l)}\) is the
bias term.  \(w_{ij}^{(l)}\) is the weight connecting unit
\(j\) from layer \(l-1\) to unit \(i\) from layer
\(l\).  The corresponding matrix notation is:


\[x^{(l)} = f(W^{(l)} x^{(l-1)} + b^{(l)})\]




Programming Example

In this section we introduce several Knet features that make it easier
to define complex models.  As our working example, we will go through
several attempts to define a 3-layer MLP.  Here is our first attempt:

function mlp3a(w, x0)
    x1 = relu(w[1] * x0 .+ w[2])
    x2 = relu(w[3] * x1 .+ w[4])
    return w[5] * x2 .+ w[6]
end





We can identify bad software engineering practices in this
definition in that it contains a lot of repetition.

The key to controlling complexity in computer languages is
abstraction.  Abstraction is the ability to name compound
structures built from primitive parts, so they too can be used as
primitives.

Defining new operators

We could make the definition of mlp3 more compact by defining
separate functions for its layers:

function mlp3b(w, x0)
    x1 = relu_layer1(w, x0)
    x2 = relu_layer2(w, x1)
    return pred_layer3(w, x2)
end

function relu_layer1(w, x)
    return relu(w[1] * x .+ w[2])
end

function relu_layer2(w, x)
    return relu(w[3] * x .+ w[4])
end

function pred_layer3(x)
    return w[5] * x .+ w[6]
end





This may make the definition of mlp3b a bit more readable.  But it
does not reduce the overall length of the program.  The helper
functions like relu_layer1 and relu_layer2 are too similar
except for the weights they use and can be reduced to a single function.

Increasing the number of layers

We can define a more general mlp model of arbitrary length. With
weights of length 2n, the following model will have n layers,
n-1 layers having the relu non-linearity:

function mlp_nlayer(w,x)
    for i=1:2:length(w)-2
        x = relu(w[i] * x .+ w[i+1]))
    end
    return w[end-1] * x .+ w[end]
end





In this example stacking the layers in a loop saved us only two
lines, but the difference can be more significant in deeper models.
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Convolutional Neural Networks


Motivation

Let’s say we are trying to build a model that will detect cats in
photographs.  The average resolution of images in ILSVRC [http://www.image-net.org/challenges/LSVRC/2014] is
\(482\times 415\), with three channels (RGB) this makes the
typical input size \(482\times 415\times 3=600,090\).  Each hidden
unit connected to the input in a multilayer perceptron would have 600K
parameters, a single hidden layer of size 1000 would have 600 million
parameters.  Too many parameters cause two types of problems: (1)
today’s GPUs have limited amount of memory (4G-12G) and large networks
fill them up quickly.  (2) models with a large number of parameters
are difficult to train without overfitting: we need a lot of data,
strong regularization, and/or a good initialization to learn with
large models.

One problem with the MLP is that it is fully connected: every hidden
unit is connected to every input pixel.  The model does not assume any
spatial relationships between pixels, in fact we can permute all the
pixels in an image and the performance of the MLP would be the same!
We could instead have an architecture where each hidden unit is
connected to a small patch of the image, say \(40\times 40\).
Each such locally connected hidden unit would have \(40\times
40\times 3=4800\) parameters instead of 600K.  For the price (in
memory) of one fully connected hidden unit, we could have 125 of these
locally connected mini-hidden-units with receptive fields spread
around the image.

The second problem with the MLP is that it does not take advantage of
the symmetry in the problem: a cat in the lower right corner of the
image is going to be similar to a cat in the lower left corner.  This
means the local hidden units looking at these two patches can share
identical weights.  We can take one \(40\times 40\) cat filter and
apply it to each \(40\times 40\) patch in the image taking up only
4800 parameters.

A convolutional neural network (aka CNN or ConvNet) combines these
two ideas and uses operations that are local and that share weights.
CNNs commonly use three types of operations: convolution, pooling, and
normalization which we describe next.




Convolution

Convolution in 1-D

Let \(w, x\) be two 1-D vectors with \(W, X\) elements
respectively.  In our examples, we will assume x is the input
(consider it a 1-D image) and w is a filter (aka kernel) with
\(W<X\).  The 1-D convolution operation \(y=w\ast x\) results
in a vector with \(Y=X-W+1\) elements defined as:


\[y_k \equiv \sum_{i+j=k+W} x_i w_j\]

or equivalently


\[y_k \equiv \sum_{i=k}^{k+W-1} x_i w_{k+W-i}\]

where \(i\in[1,X], j\in[1,W], k\in[1,Y]\).  We get each entry in y
by multiplying pairs of matching entries in x and w and summing the
results.  Matching entries in x and w are the ones whose indices add
up to a constant.  This can be visualized as flipping w, sliding it
over x, and at each step writing their dot product into a single entry
in y.  Here is an example in Julia you should be able to calculate by
hand:

julia> w = KnetArray(reshape([1.0,2.0,3.0], (3,1,1,1)))
3×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3]
julia> x = KnetArray(reshape([1.0:7.0...], (7,1,1,1)))
7×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6,7]
julia> y = conv4(w, x)
5×1×1×1 Knet.KnetArray{Float64,4}: [10,16,22,28,34]





conv4 is the convolution operation in Knet (based on the CUDNN [https://developer.nvidia.com/cudnn]
implementation).  For reasons that will become clear it works with 4-D
and 5-D arrays, so we reshape our 1-D input vectors by adding extra
singleton dimensions at the end.  The convolution of w=[1,2,3] and
x=[1,2,3,4,5,6,7] gives y=[10,16,22,28,34].  For example, the third
element of y, 22, can be obtained by reversing w to [3,2,1] and taking
its dot product starting with the third element of x, [3,4,5].

Padding

In the last example, the input x had 7 dimensions, the output y had 5.
In image processing applications we typically want to keep x and y the
same size.  For this purpose we can provide a padding keyword
argument to the conv4 operator.  If padding=k, x will be assumed
padded with k zeros on the left and right before the convolution,
e.g. padding=1 means treat x as [0 1 2 3 4 5 6 7 0].  The default
padding is 0.  For inputs in D-dimensions we can specify padding with
a D-tuple, e.g. padding=(1,2) for 2D, or a single number,
e.g. padding=1 which is shorthand for padding=(1,1).  The
result will have \(Y=X+2P-W+1\) elements where \(P\) is the
padding size.  Therefore to preserve the size of x when W=3 we should
use padding=1.

julia> y = conv4(w, x; padding=(1,0))
7×1×1×1 Knet.KnetArray{Float64,4}: [4,10,16,22,28,34,32]





For example, to calculate the first entry of y, take the dot product
of the inverted w, [3,2,1] with the first three elements of the padded
x, [0 1 2].  You can see that in order to preserve the input size,
\(Y=X\), given a filter size \(W\), the padding should be set
to \(P=(W-1)/2\).  This will work if W is odd.

Stride

In the preceding examples we shift the inverted w by one position
after each dot product.  In some cases you may want to skip two or
more positions.  The amount of skip is set by the stride keyword
argument of the conv4 operation (the default stride is 1).  In the
following example we set stride to W such that the consecutive filter
applications are non-overlapping:

julia> y = conv4(w, x; padding=(1,0), stride=3)
3×1×1×1 Knet.KnetArray{Float64,4}: [4,22,32]





Note that the output has the first, middle, and last values of the
previous example, i.e. every third value is kept and the rest are
skipped.  In general if stride=S and padding=P, the size of the output
will be:


\[Y = 1 + \left\lfloor\frac{X+2P-W}{S}\right\rfloor\]

Mode

The convolution operation we have used so far flips the convolution
kernel before multiplying it with the input.  To take our first 1-D convolution example with


\[\begin{split}y_1 &=& x_1 w_W + x_2 w_{W-1} + x_3 w_{W-2} + \ldots \\
y_2 &=& x_2 w_W + x_3 w_{W-1} + x_4 w_{W-2} + \ldots \\
\ldots\end{split}\]

We could also perform a similar operation without kernel flipping:


\[\begin{split}y_1 &=& x_1 w_1 + x_2 w_2 + x_3 w_3 + \ldots \\
y_2 &=& x_2 w_1 + x_3 w_2 + x_4 w_3 + \ldots \\
\ldots\end{split}\]

This variation is called cross-correlation.  The two modes are
specified in Knet by choosing one of the following as the
value of the mode keyword:


	0 for convolution

	1 for cross-correlation



This option would be important if we were hand designing our filters.
However the mode does not matter for CNNs where the filters are learnt
from data, the CNN will simply learn an inverted version of the filter
if necessary.

More Dimensions

When the input x has multiple dimensions convolution is defined
similarly.  In particular the filter w has the same number of
dimensions but typically smaller size.  The convolution operation
flips w in each dimension and slides it over x, calculating the sum of
elementwise products at every step.  The formulas we have given above
relating the output size to the input and filter sizes, padding and
stride parameters apply independently for each dimension.

Knet supports 2D and 3D convolutions.  The inputs and the filters have
two extra dimensions at the end which means we use 4D and 5D arrays
for 2D and 3D convolutions.  Here is a 2D convolution example:

julia> w = KnetArray(reshape([1.0:4.0...], (2,2,1,1)))
2×2×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 1.0  3.0
 2.0  4.0
julia> x = KnetArray(reshape([1.0:9.0...], (3,3,1,1)))
3×3×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 1.0  4.0  7.0
 2.0  5.0  8.0
 3.0  6.0  9.0
julia> y = conv4(w, x)
2×2×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 23.0  53.0
 33.0  63.0





To see how this result comes about, note that when you flip w in both
dimensions you get:

4 2
3 1





Multiplying this elementwise with the upper left corner of x:

1 4
2 5





and adding the results gives you the first entry 23.

The padding and stride options work similarly in multiple dimensions
and can be specified as tuples: padding=(1,2) means a padding width of
1 along the first dimension and 2 along the second dimension for a 2D
convolution.  You can use padding=1 as a shorthand for padding=(1,1).

Multiple filters

So far we have been ignoring the extra dimensions at the end of our
convolution arrays.  Now we are ready to put them to use.  A
D-dimensional input image is typically represented as a D+1
dimensional array with dimensions:


\[[ X_1, \ldots, X_D, C ]\]

The first D dimensions \(X_1\ldots X_D\) determine the spatial
extent of the image.  The last dimension \(C\) is the number of
channels (aka slices, frames, maps, filters).  The definition and
number of channels is application dependent.  We use C=3 for RGB
images representing the intensity in three colors: red, green, and
blue.  For grayscale images we have a single channel, C=1.  If you
were developing a model for chess, we could have C=12, each channel
representing the locations of a different piece type.

In an actual CNN we do not typically hand-code the filters.  Instead
we tell the network: “here are 1000 randomly initialized filters, you
go ahead and turn them into patterns useful for my task.”  This means
we usually work with banks of multiple filters simultaneously and GPUs
have optimized operations for such filter banks.  The dimensions of a
typical filter bank are:


\[[ W_1, \ldots, W_D, I, O ]\]

The first D dimensions \(W_1\ldots W_D\) determine the spatial
extent of the filters.  The next dimension \(I\) is the number of
input channels, i.e. the number of filters from the previous layer, or
the number of color channels of the input image.  The last dimension
\(O\) is the number of output channels, i.e. the number of filters
in this layer.

If we take an input of size \([X_1,\ldots, X_D,I]\) and apply a
filter bank of size \([W_1,\ldots,W_D,I,O]\) using padding
\([P_1,\ldots,P_D]\) and stride \([S_1,\ldots,S_D]\) the
resulting array will have dimensions:


\[\begin{split}[ W_1, \ldots, W_D, I, O ] \ast [ X_1, \ldots, X_D, I ]
\Rightarrow [ Y_1, \ldots, Y_D, O ] \\\end{split}\]\[\mbox{where } Y_i = 1 + \left\lfloor\frac{X_i+2P_i-W_i}{S_i}\right\rfloor\]

As an example let’s start with an input image of \(256\times 256\)
pixels and 3 RGB channels.  We’ll first apply 25 filters of size
\(5\times 5\) and padding=2, then 50 filters of size
\(3\times 3\) and padding=1, and finally 75 filters of size
\(3\times 3\) and padding=1.  Here are the dimensions we will get:


\[\begin{split}[ 256, 256, 3 ] \ast [ 5, 5, 3, 25 ] \Rightarrow [ 256, 256, 25 ] \\
[ 256, 256, 25] \ast [ 3, 3, 25,50 ] \Rightarrow [ 256, 256, 50 ] \\
[ 256, 256, 50] \ast [ 3, 3, 50,75 ] \Rightarrow [ 256, 256, 75 ]\end{split}\]

Note that the number of input channels of the input data and the
filter bank always match.  In other words, a filter covers only a
small part of the spatial extent of the input but all of its channel
depth.

Multiple instances

In addition to processing multiple filters in parallel, we will want
to implement CNNs with minibatching, i.e. process multiple inputs in
parallel.  A minibatch of D-dimensional images is represented as a D+2
dimensional array:


\[[ X_1, \ldots, X_D, I, N ]\]

where I is the number of channels as before, and N is the number of
images in a minibatch.  The convolution implementation in Knet/CUDNN
use D+2 dimensional arrays for both images and filters.  We used 1 for
the extra dimensions in our first examples, in effect using a single
channel and a single image minibatch.

If we apply a filter bank of size \([W_1, \ldots, W_D, I, O]\) to
the minibatch given above the output size would be:


\[\begin{split}[ W_1, \ldots, W_D, I, O ] \ast [ X_1, \ldots, X_D, I, N ]
\Rightarrow [ Y_1, \ldots, Y_D, O, N ] \\\end{split}\]\[\mbox{where } Y_i = 1 + \left\lfloor\frac{X_i+2P_i-W_i}{S_i}\right\rfloor\]

If we used a minibatch size of 128 in the previous example with
\(256\times 256\) images, the sizes would be:


\[\begin{split}[ 256, 256, 3, 128 ] \ast [ 5, 5, 3, 25 ] \Rightarrow [ 256, 256, 25, 128 ] \\
[ 256, 256, 25, 128] \ast [ 3, 3, 25,50 ] \Rightarrow [ 256, 256, 50, 128 ] \\
[ 256, 256, 50, 128] \ast [ 3, 3, 50,75 ] \Rightarrow [ 256, 256, 75, 128 ]\end{split}\]

basically adding an extra dimension of 128 at the end of each data
array.

By the way, the arrays in this particular example already exceed 5GB
of storage, so you would want to use a smaller minibatch size if you
had a K20 GPU with 4GB of RAM.

Note: All the dimensions given above are for column-major languages
like Julia.  CUDNN uses row-major notation, so all the dimensions
would be reversed, e.g. \([N,I,X_D,\ldots,X_1]\).

Convolution vs matrix multiplication

Convolution can be turned into a matrix multiplication, where certain
entries in the matrix are constrained to be the same.  The motivation
is to be able to use efficient algorithms for matrix multiplication
in order to perform convolution.  The drawback is the large amount of
memory needed due to repeated entries or sparse representations.

Here is a matrix implementation for our first convolution example
\(w=[1\ldots 3],\,\,x=[1\ldots 7],\,\,w\ast x = [10,16,22,28,34]\):

[image: _images/im2col1a.jpg]
In this example we repeated the entries of the filter on multiple rows
of a sparse matrix with shifted positions.  Alternatively we can
repeat the entries of the input to place each local patch on a
separate column of an input matrix:

[image: _images/im2col1b.jpg]
The first approach turns w into a \(Y\times X\) sparse matrix,
wheras the second turns x into a \(W\times Y\) dense matrix.

For 2-D images, typically the second approach is used: the local
patches of the image used by convolution are stretched out to columns
of an input matrix, an operation commonly called im2col.  Each
convolutional filter is stretched out to rows of a filter matrix.
After the matrix multiplication the resulting array is reshaped into
the proper output dimensions.  The following figure illustrates these
operations on a small example:

[image: _images/im2col2.jpg]
It is also possible to go in the other direction, i.e. implement
matrix multiplication (i.e. a fully connected layer) in terms of
convolution.  This conversion is useful when we want to build a
network that can be applied to inputs of different sizes: the matrix
multiplication would fail, but the convolution will give us outputs of
matching sizes.  Consider a fully connected layer with a weight matrix
W of size \(K\times D\) mapping a D-dimensional input vector x to
a K-dimensional output vector y.  We can consider each of the K rows
of the W matrix a convolution filter.  The following example shows how
we can reshape the arrays and use convolution for matrix
multiplication:

julia> using Knet
julia> x = KnetArray(reshape([1.0:3.0...], (3,1)))
3×1 Knet.KnetArray{Float64,2}:
 1.0
 2.0
 3.0
julia> w = KnetArray(reshape([1.0:6.0...], (2,3)))
2×3 Knet.KnetArray{Float64,2}:
 1.0  3.0  5.0
 2.0  4.0  6.0
julia> y = w * x
2×1 Knet.KnetArray{Float64,2}:
 22.0
 28.0
julia> x2 = reshape(x, (3,1,1,1))
3×1×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 1.0
 2.0
 3.0
julia> w2 = KnetArray(reshape(Array(w)', (3,1,1,2)))
3×1×1×2 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 1.0
 3.0
 5.0
[:, :, 1, 2] =
 2.0
 4.0
 6.0
julia> y2 = conv4(w2, x2; mode=1)
1×1×2×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 22.0
[:, :, 2, 1] =
 28.0





In addition to computational concerns, these examples also show that a
fully connected layer can emulate a convolutional layer given the
right weights and vice versa, i.e. convolution does not get us any
extra representational power.  However it does get us representational
and statistical efficiency, i.e. the functions we would like to
approximate are often expressed with significantly fewer parameters
using convolutional layers and thus require fewer examples to train.

Backpropagation

Convolution is a linear operation consisting of additions and
multiplications, so its backward pass is not very complicated except
for the indexing.  Just like the backward pass for matrix
multiplication can be expressed as another matrix multiplication, the
backward pass for convolution (at least if we use stride=1) can be
expressed as another convolution.  We will derive the backward pass
for a 1-D example using the cross-correlation mode (no kernel
flipping) to keep things simple.  We will denote the cross-correlation
operation with \(\star\) to distinguish it from convolution
denoted with \(\ast\).  Here are the individual entries of
\(y=w\star x\):


\[\begin{split}y_1 &=& x_1 w_1 + x_2 w_2 + x_3 w_3 + \ldots \\
y_2 &=& x_2 w_1 + x_3 w_2 + x_4 w_3 + \ldots \\
y_3 &=& x_3 w_1 + x_4 w_2 + x_5 w_3 + \ldots \\
\ldots\end{split}\]

As you can see, because of weight sharing the same w entry is used in
computing multiple y entries.  This means a single w entry effects the
objective function through multiple paths and these effects need to be
added.  Denoting \(\partial J/\partial y_i\) as \(y_i'\) for
brevity we have:


\[\begin{split}w_1' &=& x_1 y_1' + x_2 y_2' + \ldots \\
w_2' &=& x_2 y_1' + x_3 y_2' + \ldots \\
w_3' &=& x_3 y_1' + x_4 y_2' + \ldots \\
\ldots \\\end{split}\]

which can be recognized as another cross-correlation operation, this
time between \(x\) and \(y'\).  This allows us to write
\(w'=y'\star x\).

Alternatively, we can use the equivalent matrix multiplication
operation from the last section to derive the backward pass:

[image: _images/xcor-im2col-forw.jpg]
If \(r\) is the matrix with repeated \(x\) entries in this
picture, we have \(y=wr\). Remember that the backward pass for
matrix multiplication \(y=wr\) is \(w'=y'r^T\):

[image: _images/xcor-im2col-back.jpg]
which can be recognized as the matrix multiplication equivalent of the
cross correlation operation \(w'=y'\star x\).

Here is the gradient for the input:


\[\begin{split}x_1' &=& w_1 y_1' \\
x_2' &=& w_2 y_1' + w_1 y_2' \\
x_3' &=& w_3 y_1' + w_2 y_2' + w_1 y_3' \\
\ldots \\\end{split}\]

You can recognize this as a regular convolution between \(w\) and
\(y'\) with some zero padding.

The following resources provide more detailed derivations of the
backward pass for convolution:


	Goodfellow, I. (2010) [http://www.iro.umontreal.ca/~lisa/pointeurs/convolution.pdf]. Technical report: Multidimensional, downsampled convolution for autoencoders. Technical report, Université de Montréal. 312.

	Bouvrie, J. (2006) [http://people.csail.mit.edu/jvb/papers/cnn_tutorial.pdf]. Notes on convolutional neural networks.

	UFLDL tutorial [http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork] and exercise [http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionalNeuralNetwork] on CNNs.






Pooling

It is common practice to use pooling (aka subsampling) layers in
between convolution operations in CNNs.  Pooling looks at small
windows of the input, and computes a single summary statistic,
e.g. maximum or average, for each window.  A pooling layer basically
says: tell me whether this feature exists in a certain region of the
image, I don’t care exactly where.  This makes the output of the layer
invariant to small translations of the input.  Pooling layers use
large strides, typically as large as the window size, which reduces
the size of their output.

Like convolution, pooling slides a small window of a given size over
the input optionally padded with zeros skipping stride pixels every
step.  In Knet by default there is no padding, the window size is 2,
stride is equal to the window size and the pooling operation is max.
These default settings reduce each dimension of the input to half the
size.

Pooling in 1-D

Here is a 1-D example:

julia> x = KnetArray(reshape([1.0:6.0...], (6,1,1,1)))
6×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6]
julia> pool(x)
3×1×1×1 Knet.KnetArray{Float64,4}: [2,4,6]





With window size and stride equal to 2, pooling considers the input
windows \([1,2], [3,4], [5,6]\) and picks the maximum in each
window.

Window

The default and most commonly used window size is 2, however other
window sizes can be specified using the window keyword.  For
D-dimensional inputs the size can be specified using a D-tuple,
e.g. window=(2,3) for 2-D, or a single number, e.g. window=3
which is shorthand for window=(3,3) in 2-D.  Here is an example
using a window size of 3 instead of the default 2:

julia> x = KnetArray(reshape([1.0:6.0...], (6,1,1,1)))
6×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6]
julia> pool(x; window=3)
2×1×1×1 Knet.KnetArray{Float64,4}: [3, 6]





With a window and stride of 3 (the stride is equal to window size by
default), pooling considers the input windows \([1,2,3],[4,5,6]\),
and writes the maximum of each window to the output.  If the input
size is \(X\), and stride is equal to the window size \(W\),
the output will have \(Y=\lfloor X/W\rfloor\) elements.

Padding

The amount of zero padding is specified using the padding keyword
argument just like convolution.  Padding is 0 by default.  For
D-dimensional inputs padding can be specified as a tuple such as
padding=(1,2), or a single number padding=1 which is shorthand
for padding=(1,1) in 2-D.  Here is a 1-D example:

julia> x = KnetArray(reshape([1.0:6.0...], (6,1,1,1)))
6×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6]

julia> pool(x; padding=(1,0))
4×1×1×1 Knet.KnetArray{Float64,4}: [1,3,5,6]





In this example, window=stride=2 by default and the padding size is 1,
so the input is treated as \([0,1,2,3,4,5,6,0]\) and split into
windows of \([0,1],[2,3],[4,5],[6,0]\) and the maximum of each
window is written to the output.

With padding size \(P\), if the input size is \(X\), and
stride is equal to the window size \(W\), the output will have
\(Y=\lfloor (X+2P)/W\rfloor\) elements.

Stride

The pooling stride is equal to the window size by default (as opposed
to the convolution case, where it is 1 by default).  This is most
common in practice but other strides can be specified using
tuples e.g. stride=(1,2) or numbers e.g. stride=1. Here is a
1-D example with a stride of 4 instead of the default 2:

julia> x = KnetArray(reshape([1.0:10.0...], (10,1,1,1)))
10×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6,7,8,9,10]

julia> pool(x; stride=4)
4×1×1×1 Knet.KnetArray{Float64,4}: [2, 6, 10]





In general, when we have an input of size \(X\) and pool with
window size \(W\), padding \(P\), and stride \(S\), the
size of the output will be:


\[Y = 1 + \left\lfloor\frac{X+2P-W}{S}\right\rfloor\]

Pooling operations

There are three pooling operations defined by CUDNN used for
summarizing each window:


	CUDNN_POOLING_MAX

	CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING

	CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING



These options can be specified as the value of the mode keyword
argument to the pool operation.  The default is
0 (max pooling) which we have been using so far.  The last two
compute averages, and differ in whether to include or exclude the
padding zeros in these averages.  mode should be 1 for averaging
including padding, and 2 for averaging excluding padding.
For example, with input \(x=[1,2,3,4,5,6]\), window=stride=2,
and padding=1 we have the following outputs with the three options:

mode=0 => [1,3,5,6]
mode=1 => [0.5, 2.5, 4.5, 3.0]
mode=2 => [1.0, 2.5, 4.5, 6.0]





More Dimensions

D-dimensional inputs are pooled with D-dimensional windows, the size
of each output dimension given by the 1-D formulas above.  Here is a
2-D example with default options, i.e. window=stride=(2,2),
padding=(0,0), mode=max:

julia> x = KnetArray(reshape([1.0:16.0...], (4,4,1,1)))
4×4×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 1.0  5.0   9.0  13.0
 2.0  6.0  10.0  14.0
 3.0  7.0  11.0  15.0
 4.0  8.0  12.0  16.0

julia> pool(x)
2×2×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 6.0  14.0
 8.0  16.0





Multiple channels and instances

As we saw in convolution, each data array has two extra dimensions in
addition to the spatial dimensions: \([ X_1, \ldots, X_D, I, N ]\)
where \(I\) is the number of channels and \(N\) is the number
of instances in a minibatch.

When the number of channels is greater than 1, the pooling operation
is performed independently on each channel, e.g. for each patch, the
maximum/average in each channel is computed independently and copied
to the output.  Here is an example with two channels:

julia> x = KnetArray(rand(4,4,2,1))
4×4×2×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 0.880221  0.738729  0.317231   0.990521
 0.626842  0.562692  0.339969   0.92469
 0.416676  0.403625  0.352799   0.46624
 0.566254  0.634703  0.0632812  0.0857779

[:, :, 2, 1] =
 0.300799  0.407623   0.26275   0.767884
 0.217025  0.0055375  0.623168  0.957374
 0.154975  0.246693   0.769524  0.628197
 0.259161  0.648074   0.333324  0.46305

julia> pool(x)
2×2×2×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 0.880221  0.990521
 0.634703  0.46624

[:, :, 2, 1] =
 0.407623  0.957374
 0.648074  0.769524





When the number of instances is greater than 1, i.e. we are using
minibatches, the pooling operation similarly runs in parallel on all
the instances:

julia> x = KnetArray(rand(4,4,1,2))
4×4×1×2 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 0.155228  0.848345  0.629651  0.262436
 0.729994  0.320431  0.466628  0.0293943
 0.374592  0.662795  0.819015  0.974298
 0.421283  0.83866   0.385306  0.36081

[:, :, 1, 2] =
 0.0562608  0.598084  0.0231604  0.232413
 0.71073    0.411324  0.28688    0.287947
 0.997445   0.618981  0.471971   0.684064
 0.902232   0.570232  0.190876   0.339076

julia> pool(x)
2×2×1×2 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
 0.848345  0.629651
 0.83866   0.974298

[:, :, 1, 2] =
 0.71073   0.287947
 0.997445  0.684064








Normalization

Draft...

Karpathy says: “Many types of normalization layers have been proposed
for use in ConvNet architectures, sometimes with the intentions of
implementing inhibition schemes observed in the biological
brain. However, these layers have recently fallen out of favor because
in practice their contribution has been shown to be minimal, if any.”
(http://cs231n.github.io/convolutional-networks/#norm)  Batch
normalization may be an exception, as it is used in modern
architectures.

Here are some references for normalization operations:

Implementations:


	Alex Krizhevsky’s cuda-convnet library API. (https://code.google.com/archive/p/cuda-convnet/wikis/LayerParams.wiki#Local_response_normalization_layer_(same_map))

	http://caffe.berkeleyvision.org/tutorial/layers.html

	http://lasagne.readthedocs.org/en/latest/modules/layers/normalization.html



Divisive normalisation (DivN):


	S. Lyu and E. Simoncelli. Nonlinear image representation
using divisive normalization. In CVPR, pages 1–8, 2008.



Local contrast normalization (LCN):


	N. Pinto, D. D. Cox, and J. J. DiCarlo. Why is real-world visual
object recognition hard? PLoS Computational Biology,
4(1), 2008.

	Jarrett, Kevin, et al. “What is the best multi-stage architecture
for object recognition?.” Computer Vision, 2009 IEEE 12th
International Conference
on. IEEE, 2009. (http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf)



Local response normalization (LRN):


	Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet
classification with deep convolutional neural networks.” Advances in
neural information processing systems. 2012.
(http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2012_0534.pdf)



Batch Normalization: This is more of an optimization topic.


	Ioffe, Sergey, and Christian Szegedy. “Batch normalization:
Accelerating deep network training by reducing internal covariate
shift.” arXiv preprint arXiv:1502.03167 (2015). (http://arxiv.org/abs/1502.03167/)






Architectures

We have seen a number of new operations: convolution, pooling, filters
etc.  How to best put these together to form a CNN is still an active
area of research.  In this section we summarize common patterns of
usage in recent work based on (Karpathy, 2016) [http://cs231n.github.io/convolutional-networks].


	The operations in convolutional networks are usually ordered into
several layers of convolution-bias-activation-pooling sequences.
Note that the convolution-bias-activation sequence is an efficient way
to implement the common neural net function \(f(wx+b)\) for a
locally connected and weight sharing hidden layer.

	The convolutional layers are typically followed by a number of fully
connected layers that end with a softmax layer for prediction (if we
are training for a classification problem).

	It is preferrable to have multiple convolution layers with small
filter sizes rather than a single layer with a large filter size.
Consider three convolutional layers with a filter size of
\(3\times 3\).  The units in the top layer have receptive fields
of size \(7\times 7\).  Compare this with a single layer with a
filter size of \(7\times 7\).  The three layer architecture has
two advantages: The units in the single layer network is restricted
to linear decision boundaries, whereas the three layer network can
be more expressive.  Second, if we assume C channels, the parameter
tensor for the single layer network has size \([7,7,C,C]\)
whereas the three layer network has three tensors of size
\([3,3,C,C]\) i.e. a smaller number of parameters.  The one
disadvantage of the three layer network is the extra storage
required to store the intermediate results for backpropagation.

	Thus common settings for convolution use \(3\times 3\) filters
with stride = padding = 1 (which incidentally preserves the
input size).  The one exception may be a larger filter size used in
the first layer which is applied to the image pixels.  This will
save memory when the input is at its largest, and linear functions
may be sufficient to express the low level features at this stage.

	The pooling operation may not be present in every layer.  Keep in
mind that pooling destroys information and having several
convolutional layers without pooling may allow more complex features
to be learnt.  When pooling is present it is best to keep the window
size small to minimize information loss.  The common settings for
pooling are window = stride = 2, padding = 0, which halves the
input size in each dimension.



Beyond these general guidelines, you should look at the architectures
used by successful models in the literature.  Some examples are
LeNet (LeCun et al. 1998) [http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf],
AlexNet (Krizhevsky et al. 2012) [http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks],
ZFNet (Zeiler and Fergus, 2013) [http://arxiv.org/abs/1311.2901],
GoogLeNet (Szegedy et al. 2014) [http://arxiv.org/abs/1409.4842],
VGGNet (Simonyan and Zisserman, 2014) [http://arxiv.org/abs/1409.1556], and
ResNet (He et al. 2015) [http://arxiv.org/abs/1512.03385].




Exercises


	Design a filter that shifts a given image one pixel to right.

	Design an image filter that has 0 output in regions of uniform
color, but nonzero output at edges where the color changes.

	If your input consisted of two consecutive frames of video, how
would you detect motion using convolution?

	Can you implement matrix-vector multiplication in terms of convolution?
How about matrix-matrix multiplication?  Do you need reshape operations?

	Can you implement convolution in terms of matrix multiplication?

	Can you implement elementwise broadcasting multiplication in terms
of convolution?






References


	Some of this chapter was based on the excellent lecture notes from: http://cs231n.github.io/convolutional-networks

	Christopher Olah’s blog has very good visual explanations (thanks to
Melike Softa for the reference): http://colah.github.io/posts/2014-07-Conv-Nets-Modular

	UFLDL [http://ufldl.stanford.edu]
(or its old version [http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial])
is an online tutorial with programming examples and explicit gradient derivations covering
convolution [http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution],
pooling [http://ufldl.stanford.edu/tutorial/supervised/Pooling],
and CNNs [http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork].

	Hinton’s video lecture and presentation at Coursera (Lec 5): https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec5.pdf

	For a derivation of gradients see: http://people.csail.mit.edu/jvb/papers/cnn_tutorial.pdf or http://www.iro.umontreal.ca/~lisa/pointeurs/convolution.pdf

	The CUDNN manual has more details about the convolution API: https://developer.nvidia.com/cudnn

	http://deeplearning.net/tutorial/lenet.html

	http://www.denizyuret.com/2014/04/on-emergence-of-visual-cortex-receptive.html

	http://neuralnetworksanddeeplearning.com/chap6.html

	http://www.deeplearningbook.org/contents/convnets.html

	http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp

	http://scs.ryerson.ca/~aharley/vis/conv/ has a nice visualization of an MNIST CNN.  (Thanks to Fatih Ozhamaratli for the reference).

	http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet visualizing popular CNN architectures side by side with mxnet.

	http://cs231n.github.io/understanding-cnn visualizing what convnets learn.

	https://arxiv.org/abs/1603.07285 A guide to convolution arithmetic for deep learning
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Recurrent Neural Networks


References


	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec7.pdf (coursera hinton)

	http://karpathy.github.io/2015/05/21/rnn-effectiveness/

	http://colah.github.io/posts/2015-08-Understanding-LSTMs

	http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns

	https://en.wikipedia.org/wiki/Recurrent_neural_network

	https://www.willamette.edu/~gorr/classes/cs449/rnn1.html

	http://www.deeplearningbook.org/contents/rnn.html

	http://cs224d.stanford.edu/ (socher class on deep learning for nlp)
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Reinforcement Learning


References


	http://karpathy.github.io/2016/05/31/rl/

	https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

	http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

	http://videolectures.net/rldm2015_silver_reinforcement_learning/?q=david%20silver

	http://cs229.stanford.edu/notes/cs229-notes12.pdf

	http://cs.stanford.edu/people/karpathy/reinforcejs/index.html

	https://www.udacity.com/course/machine-learning-reinforcement-learning–ud820

	http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

	http://people.csail.mit.edu/regina/my_papers/TG15.pdf

	In http://karpathy.github.io/2015/05/21/rnn-effectiveness: For more
about REINFORCE and more generally Reinforcement Learning and policy
gradient methods (which REINFORCE is a special case of) David
Silver’s class, or one of Pieter Abbeel’s classes.  This is very
much ongoing work but these hard attention models have been
explored, for example, in Inferring Algorithmic Patterns with
Stack-Augmented Recurrent Nets, Reinforcement Learning Neural Turing
Machines, and Show Attend and Tell.

	In http://www.deeplearningbook.org/contents/ml.html: Please see
Sutton and Barto (1998) or Bertsekasand Tsitsiklis (1996) for
information about reinforcement learning, and Mnih et al.(2013) for
the deep learning approach to reinforcement learning.
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Optimization


References


	http://www.deeplearningbook.org/contents/numerical.html (basic intro in 4.3)

	http://www.deeplearningbook.org/contents/optimization.html (8.1 generalization, 8.2 problems, 8.3 algorithms, 8.4 init, 8.5 adaptive lr, 8.6 approx 2nd order, 8.7 meta)

	http://andrew.gibiansky.com/blog/machine-learning/gauss-newton-matrix/ (great posts on optimization)

	https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (excellent tutorial on cg, gd, eigens etc)

	http://arxiv.org/abs/1412.6544 (Goodfellow paper)

	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec6.pdf (hinton slides)

	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec8.pdf (hinton slides)

	http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

	http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_Martens10.pdf

	http://arxiv.org/abs/1503.05671

	http://arxiv.org/abs/1412.1193

	http://www.springer.com/us/book/9780387303031 (nocedal and wright)

	http://www.nrbook.com (numerical recipes)

	https://maths-people.anu.edu.au/~brent/pub/pub011.html (without derivatives)

	http://stanford.edu/~boyd/cvxbook/ (only convex optimization)









          

      

      

    


    
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Knet.jl 0.7.2 documentation 
 
      

    


    
      
          
            
  
Generalization


References


	http://www.deeplearningbook.org/contents/regularization.html

	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec9.pdf

	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec10.pdf

	http://blog.cambridgecoding.com/2016/03/24/misleading-modelling-overfitting-cross-validation-and-the-bias-variance-trade-off/
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A Tutorial Introduction


We will begin by a quick tutorial on Knet, going over the essential
tools for defining, training, and evaluating real machine learning
models in 10 short lessons.  The examples cover linear regression,
softmax classification, multilayer perceptrons, convolutional and
recurrent neural networks.  We will use these models to predict
housing prices in Boston, recognize handwritten digits, and teach the
computer to write like Shakespeare!


The goal is to get you to the point where you can create your own
models and apply machine learning to your own problems as quickly as
possible.  So some of the details and exceptions will be skipped for
now.  No prior knowledge of machine learning or Julia is necessary,
but general programming experience will be assumed.  It would be best
if you follow along with the examples on your computer.  Before we get
started please complete the installation instructions if you have not done so already.



1. Functions and models



See also


function, randn




In this section, we will create our first Knet model, and learn how to
make predictions.


In Knet, a machine learning model is defined using regular Julia
functions for prediction and loss (a function that measures how bad
our predictions are).  It may be helpful at this point to review the
Julia function [http://julia.readthedocs.org/en/release-0.4/manual/functions] syntax.  The following example defines the
prediction function for a simple linear regression model.  You can
type this definition at the Julia prompt, or you can copy and paste it
into a file which can be loaded into Julia using
include("filename"):


function linreg(w,x)
    return w[1] * x .+ w[2]
end






In this definition:



		w is a list of parameters: w[1] is a weight matrix, and
w[2] is a vector or scalar bias.


		x is the input, typically a column vector, or a minibatch matrix with one instance per column.


		The return statement specifies the output of the function.  It
is optional: if omitted the value of the last statement is returned.


		A shorter alternative syntax for simple function definitions is:
linreg(w,x)=(w*x.+b)


		The * denotes matrix product and .+ denotes elementwise
broadcasting addition.


		Broadcasting operations [http://julia.readthedocs.org/en/release-0.4/manual/arrays/#broadcasting] like .+ can act on arrays
with different sizes, such as adding a vector to each column of a
matrix.  They expand singleton dimensions in array arguments to
match the corresponding dimension in the other array without using
extra memory, and apply the operation elementwise.  Scalars are
treated as length 1 arrays.





To test our model let’s create some random parameters and random
input:


julia> w = Any[0.1*randn(1,13), 0.0]
2-element Array{Any,1}:...

julia> x1 = randn(13,1)
13x1 Array{Float64,2}:...






The randn function generates random values from the standard
normal distribution and Any[] is used to create list. To obtain
the prediction of our model on input x1 we simply call
linreg(w,x1):


julia> linreg(w,x1)
1x1 Array{Float64,2}:
 -7.10651






In this section, we have seen how to create a Knet model by writing a
prediction function, how to initialize its parameters and perform a
prediction given an input by calling this function.  Next we will see
how to train models.





2. Training a model



See also


grad, download, readdlm, array indexing, mean, std




So far we have defined our model using regular Julia code.  Knet turns
regular Julia functions into differentiable programs.  This means
that for a given input not only can they compute an output, but they
can also compute which way their parameters should be modified to
approach some desired output.  If we have some input-output data that
comes from an unknown function, we can train a Knet model to behave
like this unknown function by manipulating its parameters.


We will use the Housing [http://archive.ics.uci.edu/ml/datasets/Housing] dataset from the UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml/datasets.html] to train our linreg model.  The dataset has housing
related information for 506 neighborhoods in Boston from 1978.  Each
neighborhood has 14 attributes, the goal is to use the first 13, such
as average number of rooms per house, or distance to employment
centers, to predict the 14’th attribute: median dollar value of the
houses.  Here are the first 3 entries:


0.00632  18.00   2.310  0  0.5380  6.5750  65.20  4.0900   1  296.0  15.30 396.90   4.98  24.00
0.02731   0.00   7.070  0  0.4690  6.4210  78.90  4.9671   2  242.0  17.80 396.90   9.14  21.60
0.02729   0.00   7.070  0  0.4690  7.1850  61.10  4.9671   2  242.0  17.80 392.83   4.03  34.70
...






Let’s download the dataset and use readdlm to turn
it into a Julia array.


julia> url = "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data";
julia> file = Pkg.dir("Knet/data/housing.data");
julia> download(url, file)
  ...
julia> data = readdlm(file)'  # Don't forget the final apostrophe to transpose data
14x506 Array{Float64,2}:
   0.00632    0.02731    0.02729 ...   0.06076    0.10959    0.04741
  18.0        0.0        0.0     ...   0.0        0.0        0.0
  ...






The resulting data matrix should have 506 columns representing
neighborhoods, and 14 rows representing the attributes.  The last
attribute is the median house price to be predicted, so let’s separate
it:


julia> x = data[1:13,:]
13x506 Array{Float64,2}:...
julia> y = data[14,:]
1x506 Array{Float64,2}:...






Here we are using Julia’s array indexing [http://julia.readthedocs.org/en/release-0.4/manual/arrays/#indexing] notation to split the
data array into input x and output y.  Inside the square
brackets 1:13 means grab the rows 1 through 13, and the :
character by itself means grab all the columns.


You may have noticed that the input attributes have very different
ranges.  It is usually a good idea to normalize them by subtracting
the mean and dividing by the standard deviation:


julia> x = (x .- mean(x,2)) ./ std(x,2);






The mean() and std() functions compute the mean and
standard deviation of x.  Their optional second argument gives the
dimensions to sum over, so mean(x) gives us the mean of the whole
array, mean(x,1) gives the mean of each column, and mean(x,2)
gives us the mean of each row.


It is also a good idea to split our dataset into training and test
subsets so we can estimate how well our model will do on unseen data.


julia> n = size(x,2);
julia> r = randperm(n);
julia> xtrn=x[:,r[1:400]];
julia> ytrn=y[:,r[1:400]];
julia> xtst=x[:,r[401:end]];
julia> ytst=y[:,r[401:end]];






n is set to the number of instances (columns) and r is set to
randperm(n) which gives a random permutation of
integers \(1\ldots n\).  The first 400 indices in r will be
used for training, and the last 106 for testing.


To measure how well a given model does on the test data, we need to
write a loss function:


function quadloss(w, x, ygold)
    ypred = linreg(w, x)
    ydiff = ypred - ygold
    sqerr = ydiff .^ 2
    qloss = sum(sqerr)/size(x,2)
end






Let’s see how well our randomly initialized model does before
training:


julia> quadloss(w, xtst, ytst)
619.3898546008774






The quadratic loss function quadloss() computes
\(E[(\hat{y} - y)^2]\), i.e. the mean squared difference between a
predicted answer \(\hat{y}\) and the desired answer \(y\).
Given that \(y\) values range from 5 to 50, an RMSD [https://en.wikipedia.org/wiki/Root-mean-square_deviation] of
\(\sqrt{619.39}=24.89\) is a pretty bad score.


We would like to minimize this loss to get the predicted answers
closer to the desired answers.  To do this we first compute the loss
gradient for the parameters of linreg – this is the direction in
parameter space that maximally increases the loss.  Then we move the
parameters in the opposite direction.  Knet provides the all important
grad function to compute the gradient:


julia> using Knet
...
julia> gradloss = grad(quadloss)
...






The quadloss function returns a scalar loss given some parameters
and data.  The gradloss function takes the same inputs and returns
the parameter gradients.


julia> quadloss(w, xtst, ytst)
619.3898546008774

julia> gradloss(w, xtst, ytst)
2-element Array{Any,1}:
   1x13 Array{Float64,2}:
4.58619  -8.28269  11.7739  -9.69473  …  7.04909  9.60176  -8.72533  15.0815
-45.4604






The gradient output of gradloss has the same shape as the
parameters w, a two element list (we could have also used a tuple
or a dictionary).  For example, the first entry of the first element,
4.58619, tells us that if we increase this entry in w by a
small amount, the loss would go up by 4.58619 times that amount.
In general we go in the opposite direction of the gradient to decrease
the loss:


function train(w, x, y; lr=0.1, epochs=10)
    for epoch=1:epochs
        g = gradloss(w, x, y)
        for i in 1:length(w)
            w[i] -= lr * g[i]
        end
    end
    return w
end







		The learning rate lr controls how much we move with each gradient.


		We calculate gradients and move the weigths epochs times.


		lr and epochs are optional keyword arguments [http://julia.readthedocs.org/en/release-0.4/manual/functions/#keyword-arguments] with default values of 0.1 and 10.





Before training, it is important to set a good learning rate.  The
learning rate controls how large the update steps are going to be: too
small and you’d wait for a long time, too large and train may
never converge.  Let’s train the model for 100 epochs with the default
learning rate:


julia> w = train(w, xtrn, ytrn; epochs=100)
...






This should take a few seconds, and this time our RMSD should be much
better:


julia> quadloss(w, xtst, ytst)
23.4828...
julia> sqrt(ans)
4.8459...






We can see what the model has learnt looking at the new weights:


julia> w[1]
1x13 Array{Float64,2}:
 -0.498522  0.878553  -0.0806849  0.696847  …  -1.88488  1.14766  -3.49278






The two weights with the most negative contributions are 13 and 8.  We
can find out from UCI [http://archive.ics.uci.edu/ml/datasets/Housing] that these are:


13. LSTAT: % lower status of the population
 8. DIS: weighted distances to five Boston employment centres






And the two with the most positive contributions are 9 and 6:


9. RAD: index of accessibility to radial highways
6. RM: average number of rooms per dwelling






In this section we saw how to download data, turn it into a Julia
array, normalize and split it into input, output, train, and test
subsets.  We learned how to write a loss function and take its
gradient using grad().  We then wrote a simple training script which
improved the model parameters by taking small steps in the opposite
direction of the gradient.  Now, there are a lot more efficient and
elegant ways to perform and analyze a linear regression as you can
find out from any decent statistics text.  However the basic method
outlined in this section has the advantage of being easy to generalize
to models that are a lot larger and complicated.


... TO BE CONTINUED
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Noise Contrastive Estimation


Noise contrastive estimation (NCE) replaces the expensive
vocabulary-sized softmax operation at the final layer of language
(?) models with a cheaper sampling based operation, which results in
significant speed-up during training.  To motivate NCE, let us start
with the basic equations for probabilistic models.


To model the probability distribution \(p(y)\) of a set of objects
\(y \in \mathcal{Y}\), we start with a score function
\(s_\theta(y):\mathcal{Y}\rightarrow\mathbb{R}\) with adjustable
weights \(\theta\).  For example log-linear models use
\(s_\theta(y)=\theta^T \phi(y)\) where \(\theta\) is a weight
vector and \(\phi(y):\mathcal{Y}\rightarrow\mathbb{R}^D\) is a
function that maps an element of \(\mathcal{Y}\) to a vector of
real valued features.  Conditional models use \(p(y|x)\),
\(s_\theta(x,y)\), and \(\phi(x,y)\) instead.  We will stick
with non-conditional notation for brevity.


To go from arbitrary valued scores to normalized probability estimates
we use exponentiation and normalization (which, for some reason, is
called the softmax function):



\[p_\theta(y) = \frac{\exp s_\theta(y)}{\sum_{y'\in \mathcal{Y}} \exp s_\theta(y')}\]

The maximum likelihood estimate (MLE) training objective is to
maximize the estimated probability of a given training set
\(Y=\{y_1,\ldots,y_n\}\).  Assuming the instances in the training
set are selected independently we have \(\log p_\theta(Y) =
\sum_{y\in Y} \log p_\theta(y)\).  The contribution of an individual
instance to the objective is:



\[L_{MLE}(\theta) = \log p_\theta(y) = s_\theta(y) - \log\sum_{y'\in\mathcal{Y}}\exp s_\theta(y')\]

Stochastic gradient descent (SGD) uses the gradient of this quantity
with respect to the weights \(\theta\) to find the MLE solution:



\[\begin{split}\nabla L_{MLE}(\theta) &= \nabla s_\theta(y) - \nabla \log\sum_{y'\in\mathcal{Y}}\exp s_\theta(y') \\
&= \nabla s_\theta(y) - \frac{\sum_{y'\in\mathcal{Y}}\exp s_\theta(y') \nabla s_\theta(y')}{\sum_{y'\in\mathcal{Y}}\exp s_\theta(y')} \\
&= \nabla s_\theta(y) - \sum_{y'\in\mathcal{Y}} p_\theta(y') \nabla s_\theta(y')\end{split}\]

Note that the second term in the final equation involves a sum over
the whole \(\mathcal{Y}\) which is typically a computational
nightmare.  In order to avoid this sum, people have come up with all
sorts of tricks.  One simple example is the perceptron
approximation (ref?):



\[\begin{split}\log\sum_{y'\in\mathcal{Y}}\exp s_\theta(y') \approx \max_{y'\in\mathcal{Y}} s_\theta(y') \\
\nabla L(\theta) \approx \nabla s_\theta(y) - \nabla \max_{y'\in\mathcal{Y}} s_\theta(y')\end{split}\]

Here is an example to demonstrate why this makes sense.  Let’s say
\(\mathcal{Y}\) has three elements and their scores,
\(s_\theta(y')\), are 10, 20, and 30.  When we exponentiate these
scores we get \(e^{10}\), \(e^{20}\) and \(e^{30}\).  Note
that even though 20 and 30 are not all that different,
\(e^{30}\approx 10^{13}\) is significantly larger than
\(e^{20}\approx 5\times 10^9\).  When we add the exponentials,
\(e^{10}+e^{20}+e^{30}\), the result will not be significantly
different from \(e^{30}\), and thus the result of the final
\(\log\) will not be that different from 30 (it is
30.000045401... if you are curious) (and that is why
\(\log\sum\exp\) should be called the softmax function).


The perceptron approximation seems to replace the expensive summation
with an equally expensive looking max operation.  Fortunately the max
operation can be performed fast for certain classes of problems.  This
will be the topic of another chapter, for now let’s get back to NCE.


NCE takes a different approach to avoid the costly summation.  Instead
of modeling the empirical distribution \(p(y)\) directly, it
proposes solving the related binary classification problem of
distinguishing samples generated by \(p(y)\) from samples
generated by a “noise” distribution \(q(y)\).  It is common
practice to use a simple uniform distribution or, for language models,
the unigram distribution for \(q(y)\).


How is the binary classification problem of deciding \(p\) vs
\(q\) related to the original density estimation problem of
modeling \(p\)?  Assume we generate \(k\) noise samples
\(y_{1\ldots k}\sim q(y)\) for each real sample and add them to
our original training data.  We label each real sample with
\(d=1\) and each noise sample with \(d=0\) to train a binary
classifier.  The joint probability of the samples and labels in this
new dataset is:



\[p(d=1, y) = \frac{1}{k+1}\,p(y) \qquad
p(d=0, y) = \frac{k}{k+1}\,q(y)\]

The conditional probability of the label given the sample is:



\[p(d=1\mid y) = \frac{p(y)}{p(y)+k\,q(y)} \qquad
p(d=0\mid y) = \frac{k\,q(y)}{p(y)+k\,q(y)}\]

This means \(p(d=1\mid y)\) and \(p(y)\) are related by a
simple algebraic identity.  In fact, if somebody hands us a good
estimate for \(p(d=1\mid y)\), we can turn it into an esimate for
\(p(y)\):



\[p(y) = k\, q(y)\, \frac{p(d=1\mid y)}{p(d=0\mid y)}\]

NCE (ref?) suggests training the following binary classifier model for
\(p(d=1\mid y)\) on the dataset with noise samples.



\[p_\theta(d=1\mid y) = \frac{\exp s_\theta(y)}{\exp s_\theta(y) + k\,q(y)}\]

Using this model will give us the following for \(p_\theta(y)\):



\[\begin{split}p_\theta(y) &= k\, q(y)\, \frac{p_\theta(d=1\mid y)}{p_\theta(d=0\mid y)} \\
&= k\,q(y)\, \frac{\exp s_\theta(y)}{k\,q(y)} \\
&= \exp s_\theta(y)\end{split}\]

which amounts to assuming our costly normalization term
\(Z=\sum_{y'\in \mathcal{Y}} \exp s_\theta(y')\) is \(1\) (ref?).


Our new objective is to maximize the conditional probability of the
NCE dataset.  Consider the conditional log probability of a real
sample \(y_0\) and \(k\) noise samples \(y_1\ldots y_k\):



\[\begin{split}L_{NCE}(\theta)
&= \log p_\theta(d=1\mid y_0) + \sum_{i=1}^k \log p_\theta(d=0\mid y_i) \\
&= s_\theta(y_0) - \log(\exp s_\theta(y_0) + k\,q(y_0)) +
   \sum_{i=1}^k \log(k\,q(y_i)) - \log(\exp s_\theta(y_i) + k\,q(y_i))\end{split}\]

The gradient of the new objective is:



\[\begin{split}\nabla L_{NCE}(\theta)
&= \nabla s_\theta(y_0) - \sum_{i=0}^k \nabla \log(\exp s_\theta(y_i) + k\,q(y_i)) \\
&= \nabla s_\theta(y_0) - \sum_{i=0}^k p_\theta(d=1\mid y_i) \nabla s_\theta(y_i)\end{split}\]

In the limit \(k\rightarrow\infty\) we see that the NCE gradient
approaches the MLE gradient:



\[\begin{split}\nabla L_{NCE}(\theta)
&\rightarrow \nabla s_\theta(y_0) - \sum_{y\in\mathcal{Y}} k\, q(y) p_\theta(d=1\mid y) \nabla s_\theta(y) \\
&= \nabla s_\theta(y_0) - \sum_{y\in\mathcal{Y}} k\, q(y) \frac{\exp s_\theta(y)}{\exp s_\theta(y) + k\,q(y)} \nabla s_\theta(y) \\
&\rightarrow \nabla s_\theta(y_0) - \sum_{y\in\mathcal{Y}} \exp s_\theta(y) \nabla s_\theta(y) \\
&= \nabla s_\theta(y_0) - \sum_{y\in\mathcal{Y}} p_\theta(y) \nabla s_\theta(y)\end{split}\]

What does this all mean computationally?  Let’s compare the operations
of MLE and NCE language models in their final layers.  Say both models
use a \(D\)-dimensional internal representation.  For the MLE
model, the output is a \(V\)-dimensional probability vector where
\(V\) is the vocabulary size.  The forward pass involves
multiplication of the \(D\)-dimensional internal representation
with a \(V \times D\) decoding matrix and normalization of the
result, an \(O(VD)\) operation.


The NCE model, on the other hand, only needs the scores of the correct
word and \(K\) additional noise sample words during training.
This involves extracting \(K+1\) rows from the \(V \times D\)
decoding matrix, multiplying the \(D\)-dimensional internal
representation with the resulting \((K+1) \times D\) matrix and no
normalization, an \(O(KD)\) operation.  Because \(K \ll V\)
this results in a large speed-up.


Here is the backward pass for MLE (with subscripts dropped for
brevity):



\[\begin{split}&p(y) = \frac{\exp s(y)}{\sum_{y'\in\mathcal{Y}}\exp s(y')} \\
&L = \log p(y) = s(y) - \log\sum_{y'\in\mathcal{Y}}\exp s(y') \\\
&{\partial L}/{\partial s(y)} = 1 - p(y) \\
&{\partial L}/{\partial s(y')} = -p(y')\end{split}\]

Here is the backward pass for NCE:



\[\begin{split}&p(d=1\mid y) = \frac{\exp s(y)}{\exp s(y) + k\,q(y)} \qquad p(d=0\mid y) = \frac{k\,q(y)}{\exp s(y) + k\,q(y)} \\
&L = \log p(d=1\mid y) + \sum_{i=1}^k \log p(d=0\mid y_i) \\
&L = s(y) - \log(\exp s(y)+k\,q(y)) + \sum_{i=1}^k \log(k\,q(y_i)) - \log(\exp s(y_i)+k\,q(y_i)) \\
&{\partial L}/{\partial s(y)} = 1 - p(d=1\mid y) \\
&{\partial L}/{\partial s(y_i)} = -p(d=1\mid y_i)\end{split}\]

Research Ideas:



		Can we use the words in a minibatch as noise samples for each other,
presumably with an importance sampling correction factor?


		Can we use other models for the binary classification problem?





References:


Gutmann, M. U., & Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. The Journal of Machine Learning Research, 13(1), 307-361.


Mnih, A., & Teh, Y. W. (2012). A fast and simple algorithm for training neural probabilistic language models. arXiv preprint arXiv:1206.6426.


Dyer, C. (2014). Notes on Noise Contrastive Estimation and Negative Sampling. arXiv preprint arXiv:1410.8251.
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The Anatomy of a @knet function


Simple function:


@knet function layer(x)
    w = par(dims=(100,0))
    b = par(dims=(0,))
    x1 = dot(w,x)
    x2 = add(b,x1)
    return relu(x2)
end







		We start using the return statement instead of a variable.


		Make semicolon in par optional.





Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1), 1929-1958:


@knet function drop(x)
    if training
        r = rnd(; rgen=Bernoulli(0.5))
        return mul(r,x)
    else
        return x
    end
end







		The return statement can take just a variable?


		Without else, do we return x or do we return nothing (nothing is
consistent with Julia).  We should stick with Julia semantics
whenever possible.


		What if we return twice?  Early returns will need to terminate
the forward pass or language restricted to single return.  If
restricted to single return each branch can set the same variable
that eventually is returned.  In either case x=y needs to be a
legitimate instruction and only copy when necessary.





Le, Q. V., Jaitly, N., & Hinton, G. E. (2015). A Simple Way to
Initialize Recurrent Networks of Rectified Linear Units. arXiv
preprint arXiv:1504.00941 (IRNN,S2C):


@knet function irnn(x; hidden=0)
    wx = wdot(x; out=hidden)
    wr = wdot(r; out=hidden, winit=Identity(scale))
    xr = add(wx,wr)
    xrb = bias(xr; out=hidden)
    r = relu(xrb)
    if predicting
        return wb(r; out=1)
    end
end







		The function may return nothing?  If predicting does not trigger.





Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence
learning with neural networks. Advances in neural information
processing systems, 3104-3112. (S2S):


@knet function s2s(word)
    if encoding
        wvec1 = wdot(word; out=hidden)
        hvec1 = lstm(wvec; out=hidden)
    else
        wvec2 = wdot(word; out=hidden)
        hvec2 = lstm(wvec; out=hidden)
        return wf(hvec2; out=vocab, f=soft)
    end
end







		Problem: this won’t work because the two lstms are not sharing hidden state.





S2S second attempt:


@knet function lstm2(x,h)
    input  = add2(x,h; f=sigm)
    forget = add2(x,h; f=sigm)
    output = add2(x,h; f=sigm)
    newmem = add2(x,h; f=tanh)
    ig = mul(input,newmem)
    fc = mul(forget,cell)
    cell = add(ig,fc)
    tc = tanh(cell)
    return mul(tc,output)
end

@knet function s2s(word)
    if encoding
        x = wdot(word; out=hidden)
        h = lstm2(x,h)
    else
        x = wdot(word; out=hidden)
        h = lstm2(x,h)
        return wf(h; out=vocab, f=soft)
    end
end







		Make sure x=f(x) works.





		The two wdot and lstm2 keep their own weights.





		But they do share x and h (check this in compiler output).





		If we set x and h outside of the if statement, they’d also be
sharing wdot and lstm weights.





		Unlike local variables x and h keep their state between calls, they
are more like static variables in C.





		Need to figure out how to pass in the conditionals: we user regular
parameters for runtime inputs, keyword argument for initialization.
The compiler adds a final parameter for the output symbol.  The
condition can be (1) a global variable, (2) the final parameter, (3)
an optional parameter, (4) a keyword argument.





		We need to remember the conditions in the stack for back
calculation.  So make conditions explicit inputs?  Do we handle this
behind the scenes?





		Global condition seems to avoid complicating syntax, but
semantically the condition is one of the inputs that determine the
behavior of the funciton, so is hiding this going to cause trouble
later?  Will we need other global inputs?  Will we need other runtime
inputs that are not arrays?  Some alternatives:


@knet function s2s(x, cond)
    if in(:training, cond)
        ...
    if cond.training
        ...
    if training
        ...
    if cond[:training]
        ...









		If we make cond an explicit parameter, will it also be passed down
to child operations?





		How about if we pass a environment table of globals to make it more
general?  We’d have undefined variable problem if we did not specify
every condition.  A list of “true” symbols is more concise and serves the
purpose right now.








Gutmann, M. U., & Hyvärinen, A. (2012). Noise-contrastive estimation
of unnormalized statistical models, with applications to natural image
statistics. The Journal of Machine Learning Research, 13(1),
307-361. (NCE):


@knet function nce(x, r; kqvec=nothing)
    h = lstm(x)
    w = par(dims=(vocab,0))
    b = par(dims=(vocab,1))
    if training
        q = arr(init=kqvec)
        rw = dot(r,w)
        rb = dot(r,b)
        rq = dot(r,q)
        y  = dot(rw,h)
        s  = add(rb,y)
        return nce(rq,s)
    else
        y = dot(w,h)
        s = add(b,y1)
        return soft(y2)
    end
end







		We could define nce(x) and nce(x,r) as two functions but then cannot parameter share


		What do we pass for r when training, can we use r=nothing to make it optional?


		Insist on single return at the end?


		Should we pass q as an additional parameter?  No: Will result in copy
every time.


		Compounds and operators would shorten the code significantly, e.g.
return nce(r*q, r*b + (r*w)*h)


		Use Julia operator names, i.e. .* for mul.


		Julia parses 2a into *(2,a).


		2a+b is correctly parenthesized into +(*(2,a),b).


		2*a*b is not parenthesized *(2,a,b) but 2a*b is turned into *(*(2,a),b).


		So handling compounds and arithmetic operators should be fairly simple.





Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural
Networks, 18(5), 602-610. (BRNN):


Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006,
June). Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning (pp. 369-376)
(CTC):


Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective Approaches
to Attention-based Neural Machine Translation. arXiv preprint
arXiv:1508.04025. (Att):


Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing
Machines. arXiv preprint arXiv:1410.5401. (NTM):


** Draft **






Let us illustrate the basic components of a @knet function using the
following example:


@knet function layer(x; out=0, f=relu, o...)
    w = par(; o..., dims=(out,0))
    b = par(; o..., dims=(0,))
    x1 = dot(w,x)
    x2 = add(b,x1)
    x3 = f(x2; o...)
end






The definition starts with @knet function followed by the name of
the function.  Next comes the argument list which has several parts:



		Parameters before the semicolon denote the runtime inputs to the
function.


		Keyword arguments after the semicolon are used to provide
initialization parameters that customize the operators used in the
function.


		A final parameter with three dots at the end denotes possible
additional keyword arguments.





The important thing to remember is that everything before the
semicolon is for the runtime, and everything after the semicolon is
for the compiler.  The compiler uses the keyword arguments to
customize the operators in the function definition and they are never
used again.


The body of the function contains a sequence of Knet instructions.  It
is important to remember that these instructions are not Julia
statements.  They are very restricted, and are more like machine
language instructions than statements in a high level language.  Each
Knet instruction consists of a local variable, an equal sign, and an
operator with some arguments.


During the forward pass (?) the instructions are executed in the order
given, each instruction overwriting the value of the left-hand-side
variable.  The output of the function is the value of the last
variable set.  During the backward pass, each instruction computes the
loss gradient with respect to its inputs given the loss gradient with
respect to its output.


The operator of a Knet instruction can be a primitive (?), or another
user defined Knet function.  The argument syntax is similar to that of
a Knet function definition: runtime inputs before the semicolon, and
keyword arguments that specify initialization parameters after the
semicolon.  The values for the keyword arguments of an operator can
refer to constants or keyword arguments of the enclosing function but
not to any parameters or local variables.  Remember, parameters and
local variables change during runtime, keyword arguments are only used
during initialization.
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