
Knet.jl Documentation
Release 0.7.2

Deniz Yuret

February 22, 2017

Contents

1 Setting up Knet 3
1.1 Installation . 3
1.2 Tips for developers . 4
1.3 Using Amazon AWS . 4

2 Introduction to Knet 11
2.1 Contents . 11
2.2 Installation . 11
2.3 Examples . 12
2.4 Benchmarks . 17
2.5 Function reference . 18
2.6 Optimization methods . 18
2.7 Under the hood . 18
2.8 Contributing . 20

3 Backpropagation 21
3.1 Partial derivatives . 22
3.2 Chain rule . 22
3.3 Multiple dimensions . 24
3.4 Multiple instances . 24
3.5 Stochastic Gradient Descent . 25
3.6 References . 28

4 Softmax Classification 29
4.1 Classification . 29
4.2 Likelihood . 29
4.3 Softmax . 30
4.4 One-hot vectors . 30
4.5 Gradient of log likelihood . 31
4.6 MNIST example . 31
4.7 Representational power . 33
4.8 References . 34

5 Multilayer Perceptrons 35
5.1 Stacking linear classifiers is useless . 35
5.2 Introducing nonlinearities . 35
5.3 Types of nonlinearities (activation functions) . 37
5.4 Representational power . 38

i

5.5 Matrix vs Neuron Pictures . 39
5.6 Programming Example . 41
5.7 References . 42

6 Convolutional Neural Networks 43
6.1 Motivation . 43
6.2 Convolution . 43
6.3 Pooling . 51
6.4 Normalization . 54
6.5 Architectures . 54
6.6 Exercises . 55
6.7 References . 55

7 Recurrent Neural Networks 57
7.1 References . 57

8 Reinforcement Learning 59
8.1 References . 59

9 Optimization 61
9.1 References . 61

10 Generalization 63
10.1 References . 63

11 Indices and tables 65

ii

Knet.jl Documentation, Release 0.7.2

Contents:

Contents 1

Knet.jl Documentation, Release 0.7.2

2 Contents

CHAPTER 1

Setting up Knet

Knet.jl is a deep learning package implemented in Julia, so you should be able to run it on any machine that can run
Julia. It has been extensively tested on Linux machines with NVIDIA GPUs and CUDA libraries, but most of it works
on vanilla Linux and OSX machines as well (currently cpu-only support for some operations is incomplete). If you
would like to try it on your own computer, please follow the instructions on Installation. If you would like to try
working with a GPU and do not have access to one, take a look at Using Amazon AWS. If you find a bug, please open
a GitHub issue. If you would like to contribute to Knet, see Tips for developers. If you need help, or would like to
request a feature, please consider joining the knet-users mailing list.

Installation

First download and install the latest version of Julia from http://julialang.org/downloads. As of this writing the lat-
est version is 0.4.6 and I have tested Knet using 64-bit Generic Linux binaries and the Mac OS X package (dmg).
Once Julia is installed, type julia at the command prompt to start the Julia interpreter. To install Knet just use
Pkg.add("Knet"):

$ julia
_

_ _ _(_)_ | A fresh approach to technical computing
(_) | (_) (_) | Documentation: http://docs.julialang.org
_ _ _| |_ __ _ | Type "?help" for help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 0.4.6 (2016-06-19 17:16 UTC)

_/ |__'_|_|_|__'_| | Official http://julialang.org/ release
|__/ | x86_64-apple-darwin13.4.0

julia> Pkg.add("Knet")

Some Knet examples use additional packages such as ArgParse, GZip and JLD. These are not required by Knet, you
can install them manually when needed using Pkg.add(“PkgName”).

Run Pkg.build("Knet") to recompile Knet after optional packages are installed and to compile the Knet GPU
kernels at first installation if you have a GPU machine. To make sure everything has installed correctly, type
Pkg.test("Knet") which should take a minute kicking the tires. If all is OK, continue with the next section,
if not you can get help at the knet-users mailing list.

3

https://github.com/denizyuret/Knet.jl/issues
https://groups.google.com/forum/#!forum/knet-users
http://julialang.org/downloads
https://groups.google.com/forum/#!forum/knet-users

Knet.jl Documentation, Release 0.7.2

Tips for developers

Knet is an open-source project and we are always open to new contributions: bug fixes, new machine learning models
and operators, inspiring examples, benchmarking results are all welcome. If you’d like to contribute to the code base,
please sign up at the [knet-dev](https://groups.google.com/forum/#!forum/knet-dev) mailing list and follow these tips:

• Please get an account at github.com.

• Fork the Knet repository.

• Point Julia to your fork using Pkg.clone("git@github.com:your-username/Knet.jl.git")
and Pkg.build("Knet"). You may want to remove any old versions with Pkg.rm("Knet") first.

• Make sure your fork is up-to-date.

• Retrieve the latest version of the master branch using Pkg.checkout("Knet").

• Implement your contribution.

• Test your code using Pkg.test("Knet").

• Please submit your contribution using a pull request.

Using Amazon AWS

If you don’t have access to a GPU machine, but would like to experiment with one, Amazon Web Services is a
possible solution. I have prepared a machine image (AMI) with everything you need to run Knet. Here are step by
step instructions for launching a GPU instance with a Knet image:

1. First, you need to sign up and create an account following the instructions on Setting Up with Amazon EC2. Once
you have an account, open the Amazon EC2 console at https://console.aws.amazon.com/ec2 and login. You should
see the following screen:

2. Make sure you select the “N. California” region in the upper right corner, then click on AMIs on the lower left
menu. At the search box, choose “Public images” and search for “Knet”. Click on the latest Knet image (Knet-0.8.0

4 Chapter 1. Setting up Knet

https://groups.google.com/forum/#!forum/knet-dev
https://www.github.com
https://help.github.com/articles/fork-a-repo
https://github.com/denizyuret/Knet.jl
https://help.github.com/articles/syncing-a-fork
https://help.github.com/articles/using-pull-requests
https://aws.amazon.com
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
https://console.aws.amazon.com/ec2

Knet.jl Documentation, Release 0.7.2

as of this writing). You should see the following screen with information about the Knet AMI. Click on the “Launch”
button on the upper left.

Note: Instead of “Launch”, you may want to experiment with “Spot Request” under “Actions” to get a lower price.
You may also qualify for an educational grant if you are a student or researcher.

3. You should see the “Step 2: Choose an Instance Type” page. Next to “Filter by:” change “All instance types” to
“GPU instances”. This should reduce the number of instance types displayed to a few. Pick the “g2.2xlarge” instance
(“g2.8xlarge” has multiple GPUs and is more expensive) and click on “Review and Launch”.

1.3. Using Amazon AWS 5

https://aws.amazon.com/ec2/spot/pricing
https://aws.amazon.com/grants

Knet.jl Documentation, Release 0.7.2

4. This should take you to the “Step 7: Review Instance Launch” page. You can just click “Launch” here:

5. You should see the “key pair” pop up menu. In order to login to your instance, you need an ssh key pair. If you
have created a pair during the initial setup you can use it with “Choose an existing key pair”. Otherwise pick “Create
a new key pair” from the pull down menu, enter a name for it, and click “Download Key Pair”. Make sure you keep
the downloaded file, we will use it to login. After making sure you have the key file (it has a .pem extension), click
“Launch Instances” on the lower right.

6 Chapter 1. Setting up Knet

Knet.jl Documentation, Release 0.7.2

6. We have completed the request. You should see the “Launch Status” page. Click on your instance id under “Your
instances are launching”:

7. You should be taken to the “Instances” screen and see the address of your instance where it says something like
“Public DNS: ec2-54-153-5-184.us-west-1.compute.amazonaws.com”.

1.3. Using Amazon AWS 7

Knet.jl Documentation, Release 0.7.2

8. Open up a terminal (or Putty if you are on Windows) and type:

ssh -i knetkey.pem ec2-user@ec2-54-153-5-184.us-west-1.compute.amazonaws.com

Replacing knetkey.pem with the path to your key file and ec2-54-153-5-184 with the address of your ma-
chine. If all goes well you should get a shell prompt on your machine instance.

9. There you can type julia, and at the julia prompt Pkg.update() and Pkg.build("Knet") to get the latest
versions of the packages, as the versions in the AMI may be out of date:

[ec2-user@ip-172-31-6-90 ~]$ julia
_

_ _ _(_)_ | A fresh approach to technical computing
(_) | (_) (_) | Documentation: http://docs.julialang.org
_ _ _| |_ __ _ | Type "?help" for help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 0.4.2 (2015-12-06 21:47 UTC)

_/ |__'_|_|_|__'_| | Official http://julialang.org/ release
|__/ | x86_64-unknown-linux-gnu

WARNING: Terminal not fully functional
julia> Pkg.update()
julia> Pkg.build("Knet")

Finally you can run Pkg.test("Knet") to make sure all is good. This should take about a minute. If all tests pass,
you are ready to work with Knet:

julia> Pkg.test("Knet")
INFO: Testing Knet
INFO: Simple linear regression example
...
INFO: Knet tests passed

8 Chapter 1. Setting up Knet

Knet.jl Documentation, Release 0.7.2

julia>

1.3. Using Amazon AWS 9

Knet.jl Documentation, Release 0.7.2

10 Chapter 1. Setting up Knet

CHAPTER 2

Introduction to Knet

Knet (pronounced “kay-net”) is the Koç University deep learning framework implemented in Julia by Deniz Yuret and
collaborators. Unlike gradient generating compilers like Theano and TensorFlow which force users into a restricted
mini-language, Knet allows the definition and training of machine learning models using the full power and expres-
sivity of Julia. Models are defined by describing only the forward calculation in plain Julia allowing helper functions,
loops, conditionals, recursion, closures, tuples and dictionaries, array indexing and concatenation and almost every-
thing else Julia offers. High performance is achieved by combining automatic differentiation of most of Julia with
efficient GPU kernels and memory management. The computations can be performed on the GPU by simply using
KnetArray instead of Array for parameters and data. Check out the full documentation (in progress) and the examples
directory for more information.

Contents

• Installation

• Examples

– Linear regression

– Softmax classification

– Multi-layer perceptron

– Convolutional neural network

– Recurrent neural network

• Benchmarks

• Function reference

• Optimization methods

• Under the hood

• Contributing

Installation

You can install Knet using Pkg.add("Knet"). Some of the examples use additional packages such as ArgParse,
GZip, and JLD. These are not required by Knet and are installed automatically when needed. See the detailed instal-
lation instructions as well as the section on using Amazon AWS to experiment with GPU machines on the cloud with
pre-installed Knet images.

11

http://knet.rtfd.org
http://www.ku.edu.tr/en
http://julia.rtfd.org
http://www.denizyuret.com
http://knet.rtfd.org
https://github.com/denizyuret/Knet.jl/tree/master/examples
https://github.com/denizyuret/Knet.jl/tree/master/examples
http://knet.readthedocs.org/en/latest/install.html#installation
http://knet.readthedocs.org/en/latest/install.html#installation
http://knet.readthedocs.org/en/latest/install.html#using-amazon-aws

Knet.jl Documentation, Release 0.7.2

Examples

In Knet, a machine learning model is defined using plain Julia code. A typical model consists of a prediction and a
loss function. The prediction function takes model parameters and some input, returns the prediction of the model for
that input. The loss function measures how bad the prediction is with respect to some desired output. We train a model
by adjusting its parameters to reduce the loss. In this section we will see the prediction, loss, and training functions for
five models: linear regression, softmax classification, fully-connected, convolutional and recurrent neural networks.

Linear regression

Here is the prediction function and the corresponding quadratic loss function for a simple linear regression model:

predict(w,x) = w[1]*x .+ w[2]

loss(w,x,y) = sumabs2(y - predict(w,x)) / size(y,2)

The variable w is a list of parameters (it could be a Tuple, Array, or Dict), x is the input and y is the desired output. To
train this model, we want to adjust its parameters to reduce the loss on given training examples. The direction in the
parameter space in which the loss reduction is maximum is given by the negative gradient of the loss. Knet uses the
higher-order function grad from AutoGrad.jl to compute the gradient direction:

using Knet

lossgradient = grad(loss)

Note that grad is a higher-order function that takes and returns other functions. The lossgradient function
takes the same arguments as loss, e.g. dw = lossgradient(w,x,y). Instead of returning a loss value,
lossgradient returns dw, the gradient of the loss with respect to its first argument w. The type and size of
dw is identical to w, each entry in dw gives the derivative of the loss with respect to the corresponding entry in w. See
@doc grad for more information.

Given some training data = [(x1,y1),(x2,y2),...], here is how we can train this model:

function train(w, data; lr=.1)
for (x,y) in data

dw = lossgradient(w, x, y)
for i in 1:length(w)

w[i] -= lr * dw[i]
end

end
return w

end

We simply iterate over the input-output pairs in data, calculate the lossgradient for each example, and move the
parameters in the negative gradient direction with a step size determined by the learning rate lr. Let’s train this
model on the Housing dataset from the UCI Machine Learning Repository.

julia> url = "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
julia> rawdata = readdlm(download(url))
julia> x = rawdata[:,1:13]'
julia> x = (x .- mean(x,2)) ./ std(x,2)
julia> y = rawdata[:,14:14]'
julia> w = Any[0.1*randn(1,13), 0]
julia> for i=1:10; train(w, [(x,y)]); println(loss(w,x,y)); end
366.0463078055053
...
29.63709385230451

12 Chapter 2. Introduction to Knet

https://github.com/denizyuret/AutoGrad.jl
https://archive.ics.uci.edu/ml/datasets/Housing

Knet.jl Documentation, Release 0.7.2

The dataset has housing related information for 506 neighborhoods in Boston from 1978. Each neighborhood is
represented using 13 attributes such as crime rate or distance to employment centers. The goal is to predict the
median value of the houses given in $1000’s. After downloading, splitting and normalizing the data, we initialize the
parameters randomly and take 10 steps in the negative gradient direction. We can see the loss dropping from 366.0 to
29.6. See housing.jl for more information on this example.

Note that grad was the only function used that is not in the Julia standard library. This is typical of models defined
in Knet.

Softmax classification

In this example we build a simple classification model for the MNIST handwritten digit recognition dataset. MNIST
has 60000 training and 10000 test examples. Each input x consists of 784 pixels representing a 28x28 image. The
corresponding output indicates the identity of the digit 0..9. (image source)

Classification models handle discrete outputs, as opposed to regression models which handle numeric outputs. We
typically use the cross entropy loss function in classification models:

function loss(w,x,ygold)
ypred = predict(w,x)
ynorm = ypred .- log(sum(exp(ypred),1))
-sum(ygold .* ynorm) / size(ygold,2)

end

Other than the change of loss function, the softmax model is identical to the linear regression model. We use the same
predict, same train and set lossgradient=grad(loss) as before. To see how well our model classifies
let’s define an accuracy function which returns the percentage of instances classified correctly:

function accuracy(w, data)
ncorrect = ninstance = 0
for (x, ygold) in data

ypred = predict(w,x)
ncorrect += sum(ygold .* (ypred .== maximum(ypred,1)))
ninstance += size(ygold,2)

end
return ncorrect/ninstance

end

Now let’s train a model on the MNIST data:

julia> include(Pkg.dir("Knet/examples/mnist.jl"))
julia> using MNIST: xtrn, ytrn, xtst, ytst, minibatch
julia> dtrn = minibatch(xtrn, ytrn, 100)
julia> dtst = minibatch(xtst, ytst, 100)
julia> w = Any[-0.1+0.2*rand(Float32,10,784), zeros(Float32,10,1)]
julia> println((:epoch, 0, :trn, accuracy(w,dtrn), :tst, accuracy(w,dtst)))
julia> for epoch=1:10

train(w, dtrn; lr=0.5)
println((:epoch, epoch, :trn, accuracy(w,dtrn), :tst, accuracy(w,dtst)))

end

(:epoch,0,:trn,0.11761667f0,:tst,0.121f0)
(:epoch,1,:trn,0.9005f0,:tst,0.9048f0)
...
(:epoch,10,:trn,0.9196f0,:tst,0.9153f0)

Including mnist.jl loads the MNIST data, downloading it from the internet if necessary, and provides a training
set (xtrn,ytrn), test set (xtst,ytst) and a minibatch utility which we use to rearrange the data into chunks of 100

2.3. Examples 13

https://github.com/denizyuret/Knet.jl/blob/master/examples/housing.jl
http://yann.lecun.com/exdb/mnist
https://jamesmccaffrey.wordpress.com/2014/06/10/working-with-the-mnist-image-recognition-data-set

Knet.jl Documentation, Release 0.7.2

instances. After randomly initializing the parameters we train for 10 epochs, printing out training and test set accuracy
at every epoch. The final accuracy of about 92% is close to the limit of what we can achieve with this type of model.
To improve further we must look beyond linear models.

Multi-layer perceptron

A multi-layer perceptron, i.e. a fully connected feed-forward neural network, is basically a bunch of linear regression
models stuck together with non-linearities in between. (image source)

We can define a MLP by slightly modifying the predict function:

function predict(w,x)
for i=1:2:length(w)-2

x = max(0, w[i]*x .+ w[i+1])
end
return w[end-1]*x .+ w[end]

end

Here w[2k-1] is the weight matrix and w[2k] is the bias vector for the k’th layer. max(0,a) implements the popular
rectifier non-linearity. Note that if w only has two entries, this is equivalent to the linear and softmax models. By
adding more entries to w, we can define multi-layer perceptrons of arbitrary depth. Let’s define one with a single
hidden layer of 64 units:

w = Any[-0.1+0.2*rand(Float32,64,784), zeros(Float32,64,1),
-0.1+0.2*rand(Float32,10,64), zeros(Float32,10,1)]

The rest of the code is the same as the softmax model. We use the same cross-entropy loss function and the same
training script. The code for this example is available in mnist.jl. The multi-layer perceptron does significantly better
than the softmax model:

(:epoch,0,:trn,0.10166667f0,:tst,0.0977f0)
(:epoch,1,:trn,0.9389167f0,:tst,0.9407f0)
...
(:epoch,10,:trn,0.9866f0,:tst,0.9735f0)

Convolutional neural network

To improve the performance further, we can use a convolutional neural networks (CNN). See the course notes by
Andrej Karpathy for a good introduction to CNNs. We will implement the LeNet model which consists of two
convolutional layers followed by two fully connected layers. (image source)

Knet provides the conv4(w,x) and pool(x) functions for the implementation of convolutional nets (see @doc
conv4 and @doc pool for details):

function predict(w,x0)
x1 = pool(max(0, conv4(w[1],x0) .+ w[2]))
x2 = pool(max(0, conv4(w[3],x1) .+ w[4]))
x3 = max(0, w[5]*mat(x2) .+ w[6])
return w[7]*x3 .+ w[8]

end

The weights for the convolutional net can be initialized as follows:

w = Any[-0.1+0.2*rand(Float32,5,5,1,20), zeros(Float32,1,1,20,1),
-0.1+0.2*rand(Float32,5,5,20,50), zeros(Float32,1,1,50,1),
-0.1+0.2*rand(Float32,500,800), zeros(Float32,500,1),
-0.1+0.2*rand(Float32,10,500), zeros(Float32,10,1)]

14 Chapter 2. Introduction to Knet

http://cs231n.github.io/neural-networks-1
https://github.com/denizyuret/Knet.jl/blob/master/examples/mnist.jl
http://cs231n.github.io/convolutional-networks/
http://yann.lecun.com/exdb/lenet
http://www.dataiku.com/blog/2015/08/18/Deep_Learning.html

Knet.jl Documentation, Release 0.7.2

Currently convolution and pooling are only supported on the GPU for 4-D and 5-D arrays. So we reshape our data
and transfer it to the GPU along with the parameters by converting them into KnetArrays (see @doc KnetArray
for more information):

dtrn = map(d->(KnetArray(reshape(d[1],(28,28,1,100))), KnetArray(d[2])), dtrn)
dtst = map(d->(KnetArray(reshape(d[1],(28,28,1,100))), KnetArray(d[2])), dtst)
w = map(KnetArray, w)

The training proceeds as before giving us even better results. The code for the LeNet example can be found in lenet.jl.

(:epoch,0,:trn,0.12215f0,:tst,0.1263f0)
(:epoch,1,:trn,0.96963334f0,:tst,0.971f0)
...
(:epoch,10,:trn,0.99553335f0,:tst,0.9879f0)

Recurrent neural network

In this section we will see how to implement a recurrent neural network (RNN) in Knet. An RNN is a class of neural
network where connections between units form a directed cycle, which allows them to keep a persistent state over
time. This gives them the ability to process sequences of arbitrary length one element at a time, while keeping track
of what happened at previous elements. (image source)

As an example, we will build a character-level language model inspired by “The Unreasonable Effectiveness of Re-
current Neural Networks” from the Andrej Karpathy blog. The model can be trained with different genres of text, and
can be used to generate original text in the same style.

It turns out simple RNNs are not very good at remembering things for a very long time. Currently the most popular
solution is to use a more complicated unit like the Long Short Term Memory (LSTM). An LSTM controls the infor-
mation flow into and out of the unit using gates similar to digital circuits and can model long term dependencies. See
Understanding LSTM Networks by Christopher Olah for a good overview of LSTMs. (image source)

The code below shows one way to define an LSTM in Knet. The first two arguments are the parameters, the weight
matrix and the bias vector. The next two arguments hold the internal state of the LSTM: the hidden and cell arrays. The
last argument is the input. Note that for performance reasons we lump all the parameters of the LSTM into one matrix-
vector pair instead of using separate parameters for each gate. This way we can perform a single matrix multiplication,
and recover the gates using array indexing. We represent input, hidden and cell as row vectors rather than column
vectors for more efficient concatenation and indexing. sigm and tanh are the sigmoid and the hyperbolic tangent
activation functions. The LSTM returns the updated state variables hidden and cell.

function lstm(weight,bias,hidden,cell,input)
gates = hcat(input,hidden) * weight .+ bias
hsize = size(hidden,2)
forget = sigm(gates[:,1:hsize])
ingate = sigm(gates[:,1+hsize:2hsize])
outgate = sigm(gates[:,1+2hsize:3hsize])
change = tanh(gates[:,1+3hsize:end])
cell = cell .* forget + ingate .* change
hidden = outgate .* tanh(cell)
return (hidden,cell)

end

The LSTM has an input gate, forget gate and an output gate that control information flow. Each gate depends on the
current input value, and the last hidden state hidden. The memory value cell is computed by blending a new
value change with the old cell value under the control of input and forget gates. The output gate decides how
much of the cell is shared with the outside world.

If an input gate element is close to 0, the corresponding element in the new input will have little effect on the
memory cell. If a forget gate element is close to 1, the contents of the corresponding memory cell can be preserved

2.3. Examples 15

https://github.com/denizyuret/Knet.jl/blob/master/examples/lenet.jl
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs

Knet.jl Documentation, Release 0.7.2

for a long time. Thus the LSTM has the ability to pay attention to the current input, or reminisce in the past, and it can
learn when to do which based on the problem.

To build a language model, we need to predict the next character in a piece of text given the current character and
recent history as encoded in the internal state. The predict function below implements a multi-layer LSTM model.
s[2k-1:2k] hold the hidden and cell arrays and w[2k-1:2k] hold the weight and bias parameters for the k’th
LSTM layer. The last three elements of w are the embedding matrix and the weight/bias for the final prediction.
predict takes the current character encoded in x as a one-hot row vector, multiplies it with the embedding matrix,
passes it through a number of LSTM layers, and converts the output of the final layer to the same number of dimensions
as the input using a linear transformation. The state variable s is modified in-place.

function predict(w, s, x)
x = x * w[end-2]
for i = 1:2:length(s)

(s[i],s[i+1]) = lstm(w[i],w[i+1],s[i],s[i+1],x)
x = s[i]

end
return x * w[end-1] .+ w[end]

end

To train the language model we will use Backpropagation Through Time (BPTT) which basically means running the
network on a given sequence and updating the parameters based on the total loss. Here is a function that calculates the
total cross-entropy loss for a given (sub)sequence:

function loss(param,state,sequence,range=1:length(sequence)-1)
total = 0.0; count = 0
atype = typeof(getval(param[1]))
input = convert(atype,sequence[first(range)])
for t in range

ypred = predict(param,state,input)
ynorm = logp(ypred,2) # ypred .- log(sum(exp(ypred),2))
ygold = convert(atype,sequence[t+1])
total += sum(ygold .* ynorm)
count += size(ygold,1)
input = ygold

end
return -total / count

end

Here param and state hold the parameters and the state of the model, sequence and range give us the input
sequence and a possible range over it to process. We convert the entries in the sequence to inputs that have the same
type as the parameters one at a time (to conserve GPU memory). We use each token in the given range as an input to
predict the next token. The average cross-entropy loss per token is returned.

To generate text we sample each character randomly using the probabilities predicted by the model based on the
previous character:

function generate(param, state, vocab, nchar)
index_to_char = Array(Char, length(vocab))
for (k,v) in vocab; index_to_char[v] = k; end
input = oftype(param[1], zeros(1,length(vocab)))
index = 1
for t in 1:nchar

ypred = predict(param,state,input)
input[index] = 0
index = sample(exp(logp(ypred)))
print(index_to_char[index])
input[index] = 1

end

16 Chapter 2. Introduction to Knet

Knet.jl Documentation, Release 0.7.2

println()
end

Here param and state hold the parameters and state variables as usual. vocab is a Char->Int dictionary of the
characters that can be produced by the model, and nchar gives the number of characters to generate. We initialize
the input as a zero vector and use predict to predict subsequent characters. sample picks a random index based
on the normalized probabilities output by the model.

At this point we can train the network on any given piece of text (or other discrete sequence). For efficiency it is best
to minibatch the training data and run BPTT on small subsequences. See charlm.jl for details. Here is a sample run on
‘The Complete Works of William Shakespeare’:

$ cd .julia/Knet/examples
$ wget http://www.gutenberg.org/files/100/100.txt
$ julia charlm.jl --data 100.txt --epochs 10 --winit 0.3 --save shakespeare.jld
... takes about 10 minutes on a GPU machine
$ julia charlm.jl --load shakespeare.jld --generate 1000

Pand soping them, my lord, if such a foolish?
MARTER. My lord, and nothing in England's ground to new comp'd.
To bless your view of wot their dullst. If Doth no ape;
Which with the heart. Rome father stuff
These shall sweet Mary against a sudden him
Upon up th' night is a wits not that honour,
Shouts have sure?

MACBETH. Hark? And, Halcance doth never memory I be thou what
My enties mights in Tim thou?

PIESTO. Which it time's purpose mine hortful and
is my Lord.

BOTTOM. My lord, good mine eyest, then: I will not set up.
LUCILIUS. Who shall

Benchmarks

Each of the examples above was used as a benchmark to compare Knet with other frameworks. The table below shows
the number of seconds it takes to train a given model for a particular dataset, number of epochs and minibatch size for
Knet, Theano, Torch, Caffe and TensorFlow. Knet has comparable performance to other commonly used frameworks.

model dataset epochs batch Knet Theano Torch Caffe TFlow
LinReg Housing 10K 506 2.84 1.88 2.66 2.35 5.92
Softmax MNIST 10 100 2.35 1.40 2.88 2.45 5.57
MLP MNIST 10 100 3.68 2.31 4.03 3.69 6.94
LeNet MNIST 1 100 3.59 3.03 1.69 3.54 8.77
CharLM Hiawatha 1 128 2.25 2.42 2.23 1.43 2.86

The benchmarking was done on g2.2xlarge GPU instances on Amazon AWS. The code is available at github and as
machine image deep_AMI_v6 at AWS N.California. See the section on using Amazon AWS for more information.
The datasets are available online using the following links: Housing, MNIST, Hiawatha. The MLP uses a single
hidden layer of 64 units. CharLM uses a single layer LSTM language model with embedding and hidden layer sizes
set to 256 and trained using BPTT with a sequence length of 100. Each dataset was minibatched and transferred to
GPU prior to benchmarking when possible.

2.4. Benchmarks 17

https://github.com/denizyuret/Knet.jl/blob/master/examples/charlm.jl
https://github.com/ozanarkancan/Knet8-Benchmarks
http://knet.readthedocs.org/en/latest/install.html#using-amazon-aws
https://archive.ics.uci.edu/ml/datasets/Housing
http://yann.lecun.com/exdb/mnist
http://www.gutenberg.org/files/19/19.txt

Knet.jl Documentation, Release 0.7.2

Function reference

We implement machine learning models in Knet using regular Julia code and the grad function. Knet defines a few
more utility functions listed below. See @doc <function> for full details.

grad returns the gradient function.
KnetArray constructs a GPU array.
gradcheck compares gradients with numeric approximations.
Knet.dir returns a path relative to Knet root.
gpu determines which GPU Knet uses.
relu returns max(0,x)
sigm returns (1./(1+exp(-x)))
invx returns (1./x)
logp returns x .- log(sum(exp(x),[dims]))
logsumexp returns log(sum(exp(x),[dims]))
conv4 executes convolutions or cross-correlations.
pool replaces several adjacent values with their mean or maximum.
mat reshapes its input into a two-dimensional matrix.
update! updates the weight depending on the gradient and the parameters of the optimization method

Optimization methods

In the examples above, we used simple SGD as the optimization method and performed parameter updates manually
using w[i] -= lr * dw[i]. The update! function provides more optimization methods and can be used in
place of this manual update. In addition to a weight array w[i] and its gradient dw[i], update! requires a third
argument encapsulating the type, options, and state of the optimization method. The constructors of the supported
optimization methods are listed below. See @doc Sgd etc. for full details. Note that in general we need to keep one
of these state variables per weight array, see optimizers.jl for example usage.

Sgd encapsulates learning rate
Momentum encapsulates learning rate, gamma and velocity
Adam encapsualtes learning rate, beta1, beta2, epsilon, time, first and second moments
Adagrad encapsualtes learning rate, epsilon and accumulated gradients (G)
Adadelta encapsulates learning rate, rho, epsilon, accumulated gradients (G) and updates (delta)
Rmsprop encapsulates learning rate, rho, epsilon and accumulated gradients (G)

Under the hood

Knet relies on the AutoGrad package and the KnetArray data type for its functionality and performance. AutoGrad
computes the gradient of Julia functions and KnetArray implements high performance GPU arrays with custom mem-
ory management. This section briefly describes them.

AutoGrad

As we have seen, many common machine learning models can be expressed as differentiable programs that input
parameters and data and output a scalar loss value. The loss value measures how close the model predictions are
to desired values with the given parameters. Training a model can then be seen as an optimization problem: find
the parameters that minimize the loss. Typically, a gradient based optimization algorithm is used for computational
efficiency: the direction in the parameter space in which the loss reduction is maximum is given by the negative
gradient of the loss with respect to the parameters. Thus gradient computations take a central stage in software

18 Chapter 2. Introduction to Knet

https://github.com/denizyuret/Knet.jl/blob/master/examples/optimizers.jl
https://github.com/denizyuret/AutoGrad.jl
https://github.com/denizyuret/Knet.jl/blob/master/src/karray.jl

Knet.jl Documentation, Release 0.7.2

frameworks for machine learning. In this section I will briefly outline existing gradient computation techniques and
motivate the particular approach taken by Knet.

Computation of gradients in computer models is performed by four main methods (Baydin et al. 2015):

• manual differentiation (programming the derivatives)

• numerical differentiation (using finite difference approximations)

• symbolic differentiation (using expression manipulation)

• automatic differentiation (detailed below)

Manually taking derivatives and coding the result is labor intensive, error-prone, and all but impossible with complex
deep learning models. Numerical differentiation is simple: 𝑓 ′(𝑥) = (𝑓(𝑥 + 𝜖) − 𝑓(𝑥 − 𝜖))/(2𝜖) but impractical:
the finite difference equation needs to be evaluated for each individual parameter, of which there are typically many.
Pure symbolic differentiation using expression manipulation, as implemented in software such as Maxima, Maple, and
Mathematica is impractical for different reasons: (i) it may not be feasible to express a machine learning model as a
closed form mathematical expression, and (ii) the symbolic derivative can be exponentially larger than the model itself
leading to inefficient run-time calculation. This leaves us with automatic differentiation.

Automatic differentiation is the idea of using symbolic derivatives only at the level of elementary operations, and
computing the gradient of a compound function by applying the chain rule to intermediate numerical results. For
example, pure symbolic differentiation of sin2(𝑥) could give us 2 sin(𝑥) cos(𝑥) directly. Automatic differentiation
would use the intermediate numerical values 𝑥1 = sin(𝑥), 𝑥2 = 𝑥2

1 and the elementary derivatives 𝑑𝑥2/𝑑𝑥1 = 2𝑥1,
𝑑𝑥1/𝑑𝑥 = cos(𝑥) to compute the same answer without ever building a full gradient expression.

To implement automatic differentiation the target function needs to be decomposed into its elementary operations, a
process similar to compilation. Most machine learning frameworks (such as Theano, Torch, Caffe, Tensorflow and
older versions of Knet prior to v0.8) compile models expressed in a restricted mini-language into a computational
graph of elementary operations that have pre-defined derivatives. There are two drawbacks with this approach: (i)
the restricted mini-languages tend to have limited support for high-level language features such as conditionals, loops,
helper functions, array indexing, etc. (e.g. the infamous scan operation in Theano) (ii) the sequence of elementary
operations that unfold at run-time needs to be known in advance, and they are difficult to handle when the sequence is
data dependent.

There is an alternative: high-level languages, like Julia and Python, already know how to decompose functions into
their elementary operations. If we let the users define their models directly in a high-level language, then record
the elementary operations during loss calculation at run-time, the computational graph can be constructed from the
recorded operations. The cost of recording is not prohibitive: The table below gives cumulative times for elementary
operations of an MLP with quadratic loss. Recording only adds 15% to the raw cost of the forward computation.
Backpropagation roughly doubles the total time as expected.

op secs
a1=w1*x 0.67
a2=w2.+a1 0.71
a3=max(0,a2) 0.75
a4=w3*a3 0.81
a5=w4.+a4 0.85
a6=a5-y 0.89
a7=sumabs2(a6) 1.18
+recording 1.33
+backprop 2.79

This is the approach taken by the popular autograd Python package and its Julia port AutoGrad.jl used by Knet. In
these implementations g=grad(f) generates a gradient function g, which takes the same inputs as the function f
but returns the gradient. The gradient function g triggers recording by boxing the parameters in a special data type
and calls f. The elementary operations in f are overloaded to record their actions and output boxed answers when
their inputs are boxed. The sequence of recorded operations is then used to compute gradients. In the Julia AutoGrad

2.7. Under the hood 19

https://arxiv.org/abs/1502.05767
https://github.com/HIPS/autograd
https://github.com/denizyuret/AutoGrad.jl

Knet.jl Documentation, Release 0.7.2

package, derivatives can be defined independently for each method of a function (determined by argument types)
making full use of Julia’s multiple dispatch. New elementary operations and derivatives can be defined concisely
using Julia’s macro and meta-programming facilities. See AutoGrad.jl for details.

KnetArray

GPUs have become indispensable for training large deep learning models. Even the small examples implemented here
run up to 17x faster on the GPU compared to the 8 core CPU architecture we use for benchmarking. However GPU
implementations have a few potential pitfalls: (i) GPU memory allocation is slow, (ii) GPU-RAM memory transfer
is slow, (iii) reduction operations (like sum) can be very slow unless implemented properly (See Optimizing Parallel
Reduction in CUDA).

Knet implements KnetArray as a Julia data type that wraps GPU array pointers. KnetArray is based on the more
standard CudaArray with a few important differences: (i) KnetArrays have a custom memory manager, similar to
ArrayFire, which reuse pointers garbage collected by Julia to reduce the number of GPU memory allocations, (ii)
array ranges (e.g. a[:,3:5]) are handled as views with shared pointers instead of copies when possible, and (iii) a
number of custom CUDA kernels written for KnetArrays implement element-wise, broadcasting, and scalar and vector
reduction operations efficiently. As a result Knet allows users to implement their models using high-level code, yet be
competitive in performance with other frameworks as demonstrated in the benchmarks section.

Contributing

Knet is an open-source project and we are always open to new contributions: bug reports and fixes, feature requests and
contributions, new machine learning models and operators, inspiring examples, benchmarking results are all welcome.
If you need help or would like to request a feature, please consider joining the knet-users mailing list. If you find a
bug, please open a GitHub issue. If you would like to contribute to Knet development, check out the knet-dev mailing
list and tips for developers. If you use Knet in your own work, here is a paper you can cite:

@inproceedings{knet2016mlsys,
author={Yuret, Deniz},
title={Knet: beginning deep learning with 100 lines of Julia},
year={2016},
booktitle={Machine Learning Systems Workshop at NIPS 2016}

}

Current contributors:

• Deniz Yuret

• Ozan Arkan Can

• Onur Kuru

• Emre Ünal

• Erenay Dayanık

• Ömer Kırnap

• İlker Kesen

• Emre Yolcu

• Meriç Melike Softa

• Ekrem Emre Yurdakul

20 Chapter 2. Introduction to Knet

https://github.com/denizyuret/AutoGrad.jl
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
https://github.com/denizyuret/Knet.jl/blob/master/src/karray.jl
https://github.com/JuliaGPU/CUDArt.jl
http://arrayfire.com
https://groups.google.com/forum/#!forum/knet-users
https://github.com/denizyuret/Knet.jl/issues
https://groups.google.com/forum/#!forum/knet-dev
http://knet.readthedocs.org/en/latest/install.html#tips-for-developers
http://www2.denizyuret.com/bib/yuret/yuret2016knet/knet-beginning-deep%20%283%29.pdf

CHAPTER 3

Backpropagation

Note: Concepts: supervised learning, training data, regression, squared error, linear regression, stochastic gradient
descent

Arthur Samuel, the author of the first self-learning checkers program, defined machine learning as a “field of study that
gives computers the ability to learn without being explicitly programmed”. This leaves the definition of learning a bit
circular. Tom M. Mitchell provided a more formal definition: “A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E,” where the task, the experience, and the performance measure are to be specified based
on the problem.

We will start with supervised learning, where the task is to predict the output of an unknown system given its input,
and the experience consists of a set of example input-output pairs, also known as the training data. When the outputs
are numeric such problems are called regression. In linear regression we use a linear function as our model:

𝑦 = 𝑊𝑥+ 𝑏

Here 𝑥 is the model input, 𝑦 is the model output, 𝑊 is a matrix of weights, and 𝑏 is a vector of biases. By adjusting
the parameters of this model, i.e. the weights and the biases, we can make it compute any linear function of 𝑥.

“All models are wrong, but some models are useful.” George Box famously said. We do not necessarily know that the
system whose output we are trying to predict is governed by a linear relationship. All we know is a finite number of
input-output examples:

𝒟 = {(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)}

It is just that we have to start model building somewhere and the set of all linear functions is a good place to start for
now.

A commonly used performance measure in regression problems is the squared error, i.e. the average squared differ-
ence between the actual output values and the ones predicted by the model. So our goal is to find model parameters
that minimize the squared error:

argmin
𝑊,𝑏

1

𝑁

𝑁∑︁
𝑛=1

‖𝑦𝑛 − 𝑦𝑛‖2

Where 𝑦𝑛 = 𝑊𝑥𝑛 + 𝑏 denotes the output predicted by the model for the 𝑛 th example.

There are several methods to find the solution to the problem of minimizing squared error. Here we will present the
stochastic gradient descent (SGD) method because it generalizes well to more complex models. In SGD, we take the
training examples one at a time (or in small groups called minibatches), compute the gradient of the error with respect
to the parameters, and move the parameters a small step in the direction that will decrease the error. First some notes
on the math.

21

Knet.jl Documentation, Release 0.7.2

Partial derivatives

When we have a function with several inputs and one output, we can look at how the function value changes in
response to a small change in one of its inputs holding the rest fixed. This is called a partial derivative. Let us consider
the squared error for the 𝑛 th input as an example:

𝐽 = ‖𝑊𝑥𝑛 + 𝑏− 𝑦𝑛‖2

So the partial derivative 𝜕𝐽/𝜕𝑤𝑖𝑗 would tell us how many units 𝐽 would move if we moved 𝑤𝑖𝑗 in 𝑊 one unit (at
least for small enough units). Here is a more graphical representation:

In this figure, it is easier to see that the machinery that generates 𝐽 has many “inputs”. In particular we can talk about
how 𝐽 is effected by changing parameters 𝑊 and 𝑏, as well as changing the input 𝑥, the model output 𝑦, the desired
output 𝑦, or intermediate values like 𝑧 or 𝑟. So partial derivatives like 𝜕𝐽/𝜕𝑥𝑖 or 𝜕𝐽/𝜕𝑦𝑗 are fair game and tell us how
𝐽 would react in response to small changes in those quantities.

Chain rule

The chain rule allows us to calculate partial derivatives in terms of other partial derivatives, simplifying the overall
computation. We will go over it in some detail as it forms the basis of the backpropagation algorithm. For now let us
assume that each of the variables in the above example are scalars. We will start by looking at the effect of 𝑟 on 𝐽 and
move backward from there. Basic calculus tells us that:

𝐽 = 𝑟2

𝜕𝐽/𝜕𝑟 = 2𝑟

Thus, if 𝑟 = 5 and we decrease 𝑟 by a small 𝜖, the squared error 𝐽 will go down by 10𝜖. Now let’s move back a step
and look at 𝑦:

𝑟 = 𝑦 − 𝑦

𝜕𝑟/𝜕𝑦 = 1

So how much effect will a small 𝜖 decrease in 𝑦 have on 𝐽 when 𝑟 = 5? Well, when 𝑦 goes down by 𝜖, so will 𝑟,
which means 𝐽 will go down by 10𝜖 again. The chain rule expresses this idea:

𝜕𝐽

𝜕𝑦
=

𝜕𝐽

𝜕𝑟

𝜕𝑟

𝜕𝑦
= 2𝑟

Going back further, we have:

𝑦 = 𝑧 + 𝑏

𝜕𝑦/𝜕𝑏 = 1

𝜕𝑦/𝜕𝑧 = 1

22 Chapter 3. Backpropagation

Knet.jl Documentation, Release 0.7.2

Which means 𝑏 and 𝑧 have the same effect on 𝐽 as 𝑦 and 𝑟, i.e. decreasing them by 𝜖 will decrease 𝐽 by 2𝑟𝜖 as well.
Finally:

𝑧 = 𝑤𝑥

𝜕𝑧/𝜕𝑥 = 𝑤

𝜕𝑧/𝜕𝑤 = 𝑥

This allows us to compute the effect of 𝑤 on 𝐽 in several steps: moving 𝑤 by 𝜖 will move 𝑧 by 𝑥𝜖, 𝑦 and 𝑟 will move
exactly the same amount because their partials with 𝑧 are 1, and finally since 𝑟 moves by 𝑥𝜖, 𝐽 will move by 2𝑟𝑥𝜖.

𝜕𝐽

𝜕𝑤
=

𝜕𝐽

𝜕𝑟

𝜕𝑟

𝜕𝑦

𝜕𝑦

𝜕𝑧

𝜕𝑧

𝜕𝑤
= 2𝑟𝑥

We can represent this process of computing partial derivatives as follows:

Note that we have the same number of boxes and operations, but all the arrows are reversed. Let us call this the
backward pass, and the original computation in the previous picture the forward pass. Each box in this backward-
pass picture represents the partial derivative for the corresponding box in the previous forward-pass picture. Most
importantly, each computation is local: each operation takes the partial derivative of its output, and multiplies it with a
factor that only depends on the original input/output values to compute the partial derivative of its input(s). In fact we
can implement the forward and backward passes for the linear regression model using the following local operations:

3.2. Chain rule 23

Knet.jl Documentation, Release 0.7.2

Multiple dimensions

Let’s look at the case where the input and output are not scalars but vectors. In particular assume that 𝑥 ∈ R𝐷

and 𝑦 ∈ R𝐶 . This makes 𝑊 ∈ R𝐶×𝐷 a matrix and 𝑧, 𝑏, 𝑦, 𝑟 vectors in R𝐶 . During the forward pass, 𝑧 = 𝑊𝑥
operation is now a matrix-vector product, the additions and subtractions are elementwise operations. The squared
error 𝐽 = ‖𝑟‖2 =

∑︀
𝑟2𝑖 is still a scalar. For the backward pass we ask how much each element of these vectors or

matrices effect 𝐽 . Starting with 𝑟:

𝐽 =
∑︁

𝑟2𝑖

𝜕𝐽/𝜕𝑟𝑖 = 2𝑟𝑖

We see that when 𝑟 is a vector, the partial derivative of each component is equal to twice that component. If we put
these partial derivatives together in a vector, we obtain a gradient vector:

∇𝑟𝐽 ≡ ⟨
𝜕𝐽

𝜕𝑟1
, · · · , 𝜕𝐽

𝜕𝑟𝐶
⟩ = ⟨2𝑟1, . . . , 2𝑟𝐶⟩ = 2�⃗�

The addition, subtraction, and square norm operations work the same way as before except they act on each element.
Moving back through the elementwise operations we see that:

∇𝑟𝐽 = ∇𝑦𝐽=∇𝑏𝐽=∇𝑧𝐽=2�⃗�

For the operation 𝑧 = 𝑊𝑥, a little algebra will show you that:

∇𝑊𝐽 = ∇𝑧𝐽 · 𝑥𝑇

∇𝑥𝐽 = 𝑊𝑇 · ∇𝑧𝐽

Note that the gradient of a variable has the same shape as the variable itself. In particular ∇𝑊𝐽 is a 𝐶 × 𝐷 matrix.
Here is the graphical representation for matrix multiplication:

Multiple instances

We will typically process data multiple instances at a time for efficiency. Thus, the input 𝑥 will be a 𝐷 × 𝑁 matrix,
and the output 𝑦 will be a 𝐶 ×𝑁 matrix, the 𝑁 columns representing 𝑁 different instances. Please verify to yourself

24 Chapter 3. Backpropagation

Knet.jl Documentation, Release 0.7.2

that the forward and backward operations as described above handle this case without much change: the elementwise
operations act on the elements of the matrices just like vectors, and the matrix multiplication and its gradient remains
the same. Here is a picture of the forward and backward passes:

The only complication is at the addition of the bias vector. In the batch setting, we are adding 𝑏 ∈ R𝐶×1 to 𝑧 ∈ R𝐶×𝑁 .
This will be a broadcasting operation, i.e. the vector 𝑏 will be added to each column of the matrix 𝑧 to get 𝑦. In the
backward pass, we’ll need to add the columns of∇𝑦𝐽 to get the gradient∇𝑏𝐽 .

Stochastic Gradient Descent

The gradients calculated by backprop, ∇𝑤𝐽 and ∇𝑏𝐽 , tell us how much small changes in corresponding entries in 𝑤
and 𝑏 will effect the error (for the last instance, or minibatch). Small steps in the gradient direction will increase the
error, steps in the opposite direction will decrease the error.

In fact, we can show that the gradient is the direction of steepest ascent. Consider a unit vector 𝑣 pointing in some
arbitrary direction. The rate of change in this direction is given by the projection of 𝑣 onto the gradient, i.e. their dot
product∇𝐽 · 𝑣. What direction maximizes this dot product? Recall that:

∇𝐽 · 𝑣 = |∇𝐽 | |𝑣| cos(𝜃)

where 𝜃 is the angle between 𝑣 and the gradient vector. cos(𝜃) is maximized when the two vectors point in the same
direction. So if you are going to move a fixed (small) size step, the gradient direction gives you the biggest bang for
the buck.

This suggests the following update rule:

𝑤 ← 𝑤 −∇𝑤𝐽

This is the basic idea behind Stochastic Gradient Descent (SGD): Go over the training set instance by instance (or
minibatch by minibatch). Run the backpropagation algorithm to calculate the error gradients. Update the weights and
biases in the opposite direction of these gradients. Rinse and repeat...

3.5. Stochastic Gradient Descent 25

Knet.jl Documentation, Release 0.7.2

Over the years, people have noted many subtle problems with this approach and suggested improvements:

Step size: If the step sizes are too small, the SGD algorithm will take too long to converge. If they are too big it
will overshoot the optimum and start to oscillate. So we scale the gradients with an adjustable parameter called the
learning rate 𝜂:

𝑤 ← 𝑤 − 𝜂∇𝑤𝐽

Step direction: More importantly, it turns out the gradient (or its opposite) is often NOT the direction you want to go
in order to minimize error. Let us illustrate with a simple picture:

The figure on the left shows what would happen if you stood on one side of the long narrow valley and took the
direction of steepest descent: this would point to the other side of the valley and you would end up moving back and
forth between the two sides, instead of taking the gentle incline down as in the figure on the right. The direction across
the valley has a high gradient but also a high curvature (second derivative) which means the descent will be sharp
but short lived. On the other hand the direction following the bottom of the valley has a smaller gradient and low
curvature, the descent will be slow but it will continue for a longer distance. Newton’s method adjusts the direction
taking into account the second derivative:

26 Chapter 3. Backpropagation

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

Knet.jl Documentation, Release 0.7.2

In this figure, the two axes are w1 and w2, two parameters of our network, and the contour plot represents the error
with a minimum at x. If we start at x0, the Newton direction (in red) points almost towards the minimum, whereas the
gradient (in green), perpendicular to the contours, points to the right.

Unfortunately Newton’s direction is expensive to compute. However, it is also probably unnecessary for several rea-
sons: (1) Newton gives us the ideal direction for second degree objective functions, which our objective function almost
certainly is not, (2) The error function whose gradient backprop calculated is the error for the last minibatch/instance
only, which at best is a very noisy approximation of the real error function, thus we shouldn’t spend too much effort
trying to get the direction exactly right.

So people have come up with various approximate methods to improve the step direction. Instead of multiplying
each component of the gradient with the same learning rate, these methods scale them separately using their running
average (momentum, Nesterov), or RMS (Adagrad, Rmsprop). Some even cap the gradients at an arbitrary upper limit
(gradient clipping) to prevent unstabilities.

You may wonder whether these methods still give us directions that consistently increase/decrease the objective func-
tion. If we do not insist on the maximum increase, any direction whose components have the same signs as the gradient
vector is guaranteed to increase the function (for short enough steps). The reason is again given by the dot product
∇𝐽 · 𝑣. As long as these two vectors carry the same signs in the same components, the dot product, i.e. the rate of
change along 𝑣, is guaranteed to be positive.

Minimize what? The final problem with gradient descent, other than not telling us the ideal step size or direction, is
that it is not even minimizing the right objective! We want small error on never before seen test data, not just on the

3.5. Stochastic Gradient Descent 27

Knet.jl Documentation, Release 0.7.2

training data. The truth is, a sufficiently large model with a good optimization algorithm can get arbitrarily low error
on any finite training data (e.g. by just memorizing the answers). And it can typically do so in many different ways
(typically many different local minima for training error in weight space exist). Some of those ways will generalize
well to unseen data, some won’t. And unseen data is (by definition) not seen, so how will we ever know which weight
settings will do well on it?

There are at least three ways people deal with this problem: (1) Bayes tells us that we should use all possible models
and weigh their answers by how well they do on training data (see Radford Neal’s fbm), (2) New methods like
dropout that add distortions and noise to inputs, activations, or weights during training seem to help generalization,
(3) Pressuring the optimization to stay in one corner of the weight space (e.g. L1, L2, maxnorm regularization) helps
generalization.

References

• http://ufldl.stanford.edu/tutorial/supervised/LinearRegression

28 Chapter 3. Backpropagation

http://ufldl.stanford.edu/tutorial/supervised/LinearRegression

CHAPTER 4

Softmax Classification

Note: Concepts: classification, likelihood, softmax, one-hot vectors, zero-one loss, conditional likelihood, MLE,
NLL, cross-entropy loss

We will introduce classification problems and some simple models for classification.

Classification

Classification problems are supervised machine learning problems where the task is to predict a discrete class for a
given input (unlike regression where the output was numeric). A typical example is handwritten digit recognition
where the input is an image of a handwritten digit, and the output is one of the discrete categories {0, . . . , 9}. As in
all supervised learning problems the training data consists of a set of example input-output pairs.

Likelihood

A natural objective in classification could be to minimize the number of misclassified examples in the training data.
This number is known as the zero-one loss. However the zero-one loss has some undesirable properties for training:
in particular it is discontinuous. A small change in one of the parameters either has no effect on the loss, or can turn
one or more of the predictions from false to true or true to false, causing a discontinuous jump in the objective. This
means the gradient of the zero-one loss with respect to the parameters is either undefined or not helpful.

A more commonly used objective for classification is conditional likelihood: the probability of the observed data given
our model and the inputs. Instead of predicting a single class for each instance, we let our model predict a probability
distribution over all classes. Then we adjust the weights of the model to increase the probabilities for the correct
classes and decrease it for others. This is also known as the maximum likelihood estimation (MLE).

Let 𝒳 = {𝑥1, . . . , 𝑥𝑁} be the inputs in the training data, 𝒴 = {𝑦1, . . . , 𝑦𝑁} be the correct classes and 𝜃 be the
parameters of our model. Conditional likelihood is:

𝐿(𝜃) = 𝑃 (𝒴|𝒳 , 𝜃) =
𝑁∏︁

𝑛=1

𝑃 (𝑦𝑛|𝑥𝑛, 𝜃)

The second equation assumes that the data instances were generated independently. We usually work with log likeli-
hood for mathematical convenience: log is a monotonically increasing function, so maximizing likelihood is the same

29

Knet.jl Documentation, Release 0.7.2

as maximizing log likelihood:

ℓ(𝜃) = log𝑃 (𝒴|𝒳 , 𝜃) =
𝑁∑︁

𝑛=1

log𝑃 (𝑦𝑛|𝑥𝑛, 𝜃)

We will typically use the negative of ℓ (machine learning people like to minimize), which is known as negative log
likelihood (NLL), or cross-entropy loss.

Softmax

The linear regression model we have seen earlier produces unbounded 𝑦 values. To go from arbitrary values 𝑦 ∈ R𝐶

to normalized probability estimates 𝑝 ∈ R𝐶 for a single instance, we use exponentiation and normalization:

𝑝𝑖 =
exp 𝑦𝑖∑︀𝐶
𝑐=1 exp 𝑦𝑐

where 𝑖, 𝑐 ∈ {1, . . . , 𝐶} range over classes, and 𝑝𝑖, 𝑦𝑖, 𝑦𝑐 refer to class probabilities and values for a single instance.
This is called the softmax function. A model that converts the unnormalized values at the end of a linear regression
to normalized probabilities for classification is called the softmax classifier.

We need to figure out the backward pass for the softmax function. In other words if someone gives us the gradient
of some objective 𝐽 with respect to the class probabilities 𝑝 for a single training instance, what is the gradient with
respect to the input of the softmax 𝑦? First we’ll find the partial derivative of one component of 𝑝 with respect to one
component of 𝑦:

𝜕𝑝𝑖
𝜕𝑦𝑗

=

[𝑖 = 𝑗] exp 𝑦𝑖
∑︀

𝑐 exp 𝑦𝑐 − exp 𝑦𝑖 exp 𝑦𝑗
(
∑︀

𝑐 exp 𝑦𝑐)
2

=

[𝑖 = 𝑗] 𝑝𝑖 − 𝑝𝑖𝑝𝑗

The square brackets are the Iverson bracket notation, i.e. [𝐴] is 1 if 𝐴 is true, and 0 if 𝐴 is false.

Note that a single entry in 𝑦 effects 𝐽 through multiple paths (𝑦𝑗 contributes to the denominator of every 𝑝𝑖), and these
effects need to be added for 𝜕𝐽/𝜕𝑦𝑗 :

𝜕𝐽

𝜕𝑦𝑗
=

𝐶∑︁
𝑖=1

𝜕𝐽

𝜕𝑝𝑖

𝜕𝑝𝑖
𝜕𝑦𝑗

One-hot vectors

When using a probabilistic classifier, it is convenient to represent the desired output as a one-hot vector, i.e. a vector
in which all entries are ‘0’ except a single ‘1’. If the correct class is 𝑐 ∈ {1, . . . , 𝐶}, we represent this with a one-
hot vector 𝑝 ∈ R𝐶 where 𝑝𝑐 = 1 and 𝑝𝑖 ̸=𝑐 = 0. Note that 𝑝 can be viewed as a probability vector where all the
probability mass is concentrated at c. This representation also allows us to have probabilistic targets where there is
not a single answer but target probabilities associated with each answer. Given a one-hot (or probabilistic) 𝑝, and the
model prediction 𝑝, we can write the log-likelihood for a single instance as:

ℓ =

𝐶∑︁
𝑐=1

𝑝𝑐 log 𝑝𝑐

30 Chapter 4. Softmax Classification

https://en.wikipedia.org/wiki/Iverson_bracket

Knet.jl Documentation, Release 0.7.2

Gradient of log likelihood

To compute the gradient for log likelihood, we need to make the normalization of 𝑝 explicit:

ℓ =∑︁
𝑐

𝑝𝑐 log
𝑝𝑐∑︀
𝑘 𝑝𝑘

=∑︁
𝑐

𝑝𝑐 log 𝑝𝑐 −
∑︁
𝑐

𝑝𝑐 log
∑︁
𝑘

𝑝𝑘

=

(
∑︁
𝑐

𝑝𝑐 log 𝑝𝑐)− (log
∑︁
𝑘

𝑝𝑘)

𝜕ℓ

𝜕𝑝𝑖
=

𝑝𝑖
𝑝𝑖
− 1∑︀

𝑘 𝑝𝑘
=

𝑝𝑖
𝑝𝑖
− 1

The gradient with respect to unnormalized y takes a particularly simple form:

𝜕ℓ

𝜕𝑦𝑗
=∑︁

𝑖

𝜕ℓ

𝜕𝑝𝑖

𝜕𝑝𝑖
𝜕𝑦𝑗

=∑︁
𝑖

(
𝑝𝑖
𝑝𝑖
− 1)([𝑖 = 𝑗] 𝑝𝑖 − 𝑝𝑖𝑝𝑗)

=

𝑝𝑗 − 𝑝𝑗

∇ℓ =
𝑝− 𝑝

The gradient with respect to 𝑝 causes numerical overflow when some components of 𝑝 get very small. In practice we
usually skip that and directly compute the gradient with respect to 𝑦 which is numerically stable.

MNIST example

Let’s try our softmax classifier on the MNIST handwritten digit classification dataset. Here are the first 8 images from
MNIST, the goal is to look at the pixels and classify each image as one of the digits 0-9:

4.5. Gradient of log likelihood 31

http://yann.lecun.com/exdb/mnist

Knet.jl Documentation, Release 0.7.2

See training-with-minibatches for more information about the MNIST task, loading and minibatching data, and simple
train and test scripts.

Here is the softmax classifier in Julia:

function softmax(w,x,ygold)
ypred = w[1] * x .+ w[2]
return softloss(ygold, ypred)

end

function softloss(ygold, ypred)
ynorm = ypred .- log(sum(exp(ypred),1))
-sum(ygold .* ynorm) / size(ygold,2)

end

softmax_gradient = grad(softmax)

Let us train our model for 100 epochs and print out the classification error on the training and test sets after every
epoch (see the full example in Pkg.dir(“Knet/examples/mnist.jl”)):

w = Any[0.1*randn(10,784), zeros(10,1)]
for epoch=1:nepochs

for (x,y) in dtrn # dtrn is a list of minibatches
g = softmax_gradient(w, x, y)
for i in 1:length(w)

w[i] -= lr * g[i]
end

end
Print accuracy

end

(:epoch,0,:trn,0.1135,:tst,0.1097)
(:epoch,1,:trn,0.9008666666666667,:tst,0.9048)
...
(:epoch,99,:trn,0.9274833333333333,:tst,0.9177)
(:epoch,100,:trn,0.92755,:tst,0.9176)

Here is a plot of the losses vs training epochs:

32 Chapter 4. Softmax Classification

Knet.jl Documentation, Release 0.7.2

We can observe a few things. First the training losses are better than the test losses. This means there is some
overfitting. Second, it does not look like the training loss is going down to zero. This means the softmax model is not
flexible enough to fit the training data exactly.

Representational power

So far we have seen how to create a machine learning model as a differentiable program (linear regression, softmax
classification) whose parameters can be adjusted to hopefully imitate whatever process generated our training data. A
natural question to ask is whether a particular model can behave like any system we want (given the right parameters)
or whether there is a limit to what it can represent.

It turns out the softmax classifier is quite limited in its representational power: it can only represent linear classification
boundaries. To show this, remember the form of the softmax classifier which gives the probability of the i’th class as:

𝑝𝑖 =
exp 𝑦𝑖∑︀𝐶
𝑐=1 exp 𝑦𝑐

where 𝑦𝑖 is a linear function of the input 𝑥. Note that 𝑝𝑖 is a monotonically increasing function of 𝑦𝑖, so for two classes
𝑖 and 𝑗, 𝑝𝑖 > 𝑝𝑗 if 𝑦𝑖 > 𝑦𝑗 . The boundary between two classes 𝑖 and 𝑗 is the set of inputs for which the probability of
the two classes are equal:

𝑝𝑖 =

𝑝𝑗

𝑦𝑖 =

𝑦𝑗

𝑤𝑖𝑥+ 𝑏𝑖 =

𝑤𝑗𝑥+ 𝑏𝑗

(𝑤𝑖 − 𝑤𝑗)𝑥+ (𝑏𝑖 − 𝑏𝑗) =

0

where 𝑤𝑖, 𝑏𝑖 refer to the i’th row of 𝑤 and 𝑏. This is a linear equation, i.e. the border between two classes will always
be linear in the input space with the softmax classifier:

4.7. Representational power 33

Knet.jl Documentation, Release 0.7.2

In the MNIST example, the relation between the pixels and the digit classes is unlikely to be this simple. That is why
we are stuck at 6-7% training error. To get better results we need more powerful models.

References

• http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression

34 Chapter 4. Softmax Classification

http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression

CHAPTER 5

Multilayer Perceptrons

In this section we create multilayer perceptrons by stacking multiple linear layers with non-linear activation functions
in between.

Stacking linear classifiers is useless

We could try stacking multiple linear classifiers together. Here is a two layer model:

function multilinear(w, x, ygold)
y1 = w[1] * x .+ w[2]
y2 = w[3] * y1 .+ w[4]
return softloss(ygold, y2)

end

Note that instead of using y1 as our prediction, we used it as input to another linear classifier. Intermediate arrays like
y1 are known as hidden layers because their contents are not directly visible outside the model.

If you experiment with this model (I suggest using a smaller learning rate, e.g. 0.01), you will see that it performs
similarly to the original softmax model. The reason is simple to see if we write the function computed in mathematical
notation and do some algebra:

𝑝 =

soft(𝑊2(𝑊1𝑥+ 𝑏1) + 𝑏2)

=

soft((𝑊2𝑊1)𝑥+𝑊2𝑏1 + 𝑏2)

=

soft(𝑊𝑥+ 𝑏)

where 𝑊 = 𝑊2𝑊1 and 𝑏 = 𝑊2𝑏1 + 𝑏2. In other words, we still have a linear classifier! No matter how many linear
functions you put on top of each other, what you get at the end is still a linear function. So this model has exactly the
same representation power as the softmax model. Unless, we add a simple instruction...

Introducing nonlinearities

Here is a slightly modified version of the two layer model:

35

Knet.jl Documentation, Release 0.7.2

function mlp(w, x, ygold)
y1 = relu(w[1] * x .+ w[2])
y2 = w[3] * y1 .+ w[4]
return softloss(ygold, y2)

end

MLP in mlp stands for multilayer perceptron which is one name for this type of model. The only difference with
the previous example is the relu() function we introduced in the first line. This is known as the rectified linear unit
(or rectifier), and is a simple function defined by relu(x)=max(x,0) applied elementwise to the input array. So
mathematically what we are computing is:

𝑝 =

soft(𝑊2 relu(𝑊1𝑥+ 𝑏1) + 𝑏2)

This cannot be reduced to a linear function, which may not seem like a big difference but what a difference it makes
to the model! Here are the learning curves for mlp using a hidden layer of size 64:

Here are the learning curves for the linear model softmax plotted at the same scale for comparison:

36 Chapter 5. Multilayer Perceptrons

Knet.jl Documentation, Release 0.7.2

We can observe a few things: using MLP instead of a linear model brings the training error from 6.7% to 0 and the
test error from 7.5% to 2.0%. There is still overfitting: the test error is not as good as the training error, but the model
has no problem classifying the training data (all 60,000 examples) perfectly!

Types of nonlinearities (activation functions)

The functions we throw between linear layers to break the linearity are called nonlinearities or activation functions.
Here are some activation functions that have been used as nonlinearities:

5.3. Types of nonlinearities (activation functions) 37

Knet.jl Documentation, Release 0.7.2

The step functions were the earliest activation functions used in the perceptrons of 1950s. Unfortunately they do
not give a useful derivative that can be used for training a multilayer model. Sigmoid and tanh (sigm and tanh
in Knet) became popular in 1980s as smooth approximations to the step functions and allowed the application of
the backpropagation algorithm. Modern activation functions like relu and maxout are piecewise linear. They are
computationally inexpensive (no exponentials), and perform well in practice. We are going to use relu in most of our
models. Here is the backward passes for sigmoid, tanh, and relu:

function forward backward
sigmoid 𝑦 = 1

1+𝑒−𝑥 ∇𝑥𝐽 = 𝑦 (1− 𝑦)∇𝑦𝐽

tanh 𝑦 = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 ∇𝑥𝐽 = (1 + 𝑦)(1− 𝑦)∇𝑦𝐽

relu 𝑦 = max(0, 𝑥) ∇𝑥𝐽 = [𝑦 ≥ 0]∇𝑦𝐽

See (Karpathy, 2016, Ch 1) for more on activation functions and MLP architecture.

Representational power

You might be wondering whether relu had any special properties or would any of the other nonlinearities be suf-
ficient. Another question is whether there are functions multilayer perceptrons cannot represent and if so whether
adding more layers or different types of functions would increase their representational power. The short answer is
that a two layer model can approximate any function if the hidden layer is large enough, and can do so with any of the
nonlinearities introduced in the last section. Multilayer perceptrons are universal function approximators!

We said that a two-layer MLP is a universal function approximator given enough hidden units. This brings up the
questions of efficiency: how many hidden units / parameters does one need to approximate a given function and
whether the number of units depends on the number of hidden layers. The efficiency is important both computationally
and statistically: models with fewer parameters can be evaluated faster, and can learn from fewer examples (ref?). It
turns out there are functions whose representations are exponentially more expensive in a shallow network compared

38 Chapter 5. Multilayer Perceptrons

http://cs231n.github.io/neural-networks-1

Knet.jl Documentation, Release 0.7.2

to a deeper network (see (Nielsen, 2016, Ch 5) for a discussion). Recent winners of image recognition contests use
networks with dozens of convolutional layers. The advantage of deeper MLPs is empirically less clear, but you should
experiment with the number of units and layers using a development set when starting a new problem.

Please see (Nielsen, 2016, Ch 4) for an intuitive explanation of the universality result and (Bengio et al. 2016, Ch 6.4)
for a more in depth discussion and references.

Matrix vs Neuron Pictures

So far we have introduced multilayer perceptrons (aka artificial neural networks) using matrix operations. You may be
wondering why people call them neural networks and be confused by terms like layers and units. In this section we
will give the correspondence between the matrix view and the neuron view. Here is a schematic of a biological neuron
(figures from (Karpathy, 2016, Ch 1)):

A biological neuron is a complex organism supporting thousands of chemical reactions simultaneously under the reg-
ulation of thousands of genes, communicating with other neurons through electrical and chemical pathways involving
dozens of different types of neurotransmitter molecules. We assume (do not know for sure) that the main mechanism
of communication between neurons is electrical spike trains that travel from the axon of the source neuron, through
connections called synapses, into dendrites of target neurons. We simplify this picture further representing the strength
of the spikes and the connections with simple numbers to arrive at this cartoon model:

This model is called an artificial neuron, a perceptron, or simply a unit in neural network literature. We know it as the
softmax classifier.

When a number of these units are connected in layers, we get a multilayer perceptron. When counting layers, we
ignore the input layer. So the softmax classifier can be considered a one layer neural network. Here is a neural
network picture and the corresponding matrix picture for a two layer model:

5.5. Matrix vs Neuron Pictures 39

http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.deeplearningbook.org/contents/mlp.html
http://cs231n.github.io/neural-networks-1

Knet.jl Documentation, Release 0.7.2

Here is a neural network picture and the corresponding matrix picture for a three layer model:

40 Chapter 5. Multilayer Perceptrons

Knet.jl Documentation, Release 0.7.2

We can use the following elementwise notation for the neural network picture (e.g. similar to the one used in UFLDL):

𝑥
(𝑙)
𝑖 = 𝑓(𝑏

(𝑙)
𝑖 +

∑︁
𝑗

𝑤
(𝑙)
𝑖𝑗 𝑥

(𝑙−1)
𝑗)

Here 𝑥
(𝑙)
𝑖 refers to the activation of the 𝑖 th unit in 𝑙 th layer. We are counting the input as the 0’th layer. 𝑓 is the

activation function, 𝑏(𝑙)𝑖 is the bias term. 𝑤
(𝑙)
𝑖𝑗 is the weight connecting unit 𝑗 from layer 𝑙 − 1 to unit 𝑖 from layer 𝑙.

The corresponding matrix notation is:

𝑥(𝑙) = 𝑓(𝑊 (𝑙)𝑥(𝑙−1) + 𝑏(𝑙))

Programming Example

In this section we introduce several Knet features that make it easier to define complex models. As our working
example, we will go through several attempts to define a 3-layer MLP. Here is our first attempt:

function mlp3a(w, x0)
x1 = relu(w[1] * x0 .+ w[2])
x2 = relu(w[3] * x1 .+ w[4])
return w[5] * x2 .+ w[6]

end

We can identify bad software engineering practices in this definition in that it contains a lot of repetition.

The key to controlling complexity in computer languages is abstraction. Abstraction is the ability to name compound
structures built from primitive parts, so they too can be used as primitives.

Defining new operators

We could make the definition of mlp3 more compact by defining separate functions for its layers:

function mlp3b(w, x0)
x1 = relu_layer1(w, x0)
x2 = relu_layer2(w, x1)
return pred_layer3(w, x2)

end

function relu_layer1(w, x)
return relu(w[1] * x .+ w[2])

end

5.6. Programming Example 41

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks

Knet.jl Documentation, Release 0.7.2

function relu_layer2(w, x)
return relu(w[3] * x .+ w[4])

end

function pred_layer3(x)
return w[5] * x .+ w[6]

end

This may make the definition of mlp3b a bit more readable. But it does not reduce the overall length of the program.
The helper functions like relu_layer1 and relu_layer2 are too similar except for the weights they use and can
be reduced to a single function.

Increasing the number of layers

We can define a more general mlp model of arbitrary length. With weights of length 2n, the following model will have
n layers, n-1 layers having the relu non-linearity:

function mlp_nlayer(w,x)
for i=1:2:length(w)-2

x = relu(w[i] * x .+ w[i+1]))
end
return w[end-1] * x .+ w[end]

end

In this example stacking the layers in a loop saved us only two lines, but the difference can be more significant in
deeper models.

References

• http://neuralnetworksanddeeplearning.com/chap4.html

• http://www.deeplearningbook.org/contents/mlp.html

• http://cs231n.github.io/neural-networks-1

• http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetwork

• http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch

42 Chapter 5. Multilayer Perceptrons

http://neuralnetworksanddeeplearning.com/chap4.html
http://www.deeplearningbook.org/contents/mlp.html
http://cs231n.github.io/neural-networks-1
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetwork
http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch

CHAPTER 6

Convolutional Neural Networks

Motivation

Let’s say we are trying to build a model that will detect cats in photographs. The average resolution of images in
ILSVRC is 482× 415, with three channels (RGB) this makes the typical input size 482× 415× 3 = 600, 090. Each
hidden unit connected to the input in a multilayer perceptron would have 600K parameters, a single hidden layer of
size 1000 would have 600 million parameters. Too many parameters cause two types of problems: (1) today’s GPUs
have limited amount of memory (4G-12G) and large networks fill them up quickly. (2) models with a large number
of parameters are difficult to train without overfitting: we need a lot of data, strong regularization, and/or a good
initialization to learn with large models.

One problem with the MLP is that it is fully connected: every hidden unit is connected to every input pixel. The
model does not assume any spatial relationships between pixels, in fact we can permute all the pixels in an image
and the performance of the MLP would be the same! We could instead have an architecture where each hidden
unit is connected to a small patch of the image, say 40 × 40. Each such locally connected hidden unit would have
40 × 40 × 3 = 4800 parameters instead of 600K. For the price (in memory) of one fully connected hidden unit, we
could have 125 of these locally connected mini-hidden-units with receptive fields spread around the image.

The second problem with the MLP is that it does not take advantage of the symmetry in the problem: a cat in the
lower right corner of the image is going to be similar to a cat in the lower left corner. This means the local hidden
units looking at these two patches can share identical weights. We can take one 40× 40 cat filter and apply it to each
40× 40 patch in the image taking up only 4800 parameters.

A convolutional neural network (aka CNN or ConvNet) combines these two ideas and uses operations that are local
and that share weights. CNNs commonly use three types of operations: convolution, pooling, and normalization which
we describe next.

Convolution

Convolution in 1-D

Let 𝑤, 𝑥 be two 1-D vectors with 𝑊,𝑋 elements respectively. In our examples, we will assume x is the input (consider
it a 1-D image) and w is a filter (aka kernel) with 𝑊 < 𝑋 . The 1-D convolution operation 𝑦 = 𝑤 * 𝑥 results in a
vector with 𝑌 = 𝑋 −𝑊 + 1 elements defined as:

𝑦𝑘 ≡
∑︁

𝑖+𝑗=𝑘+𝑊

𝑥𝑖𝑤𝑗

43

http://www.image-net.org/challenges/LSVRC/2014

Knet.jl Documentation, Release 0.7.2

or equivalently

𝑦𝑘 ≡
𝑘+𝑊−1∑︁

𝑖=𝑘

𝑥𝑖𝑤𝑘+𝑊−𝑖

where 𝑖 ∈ [1, 𝑋], 𝑗 ∈ [1,𝑊], 𝑘 ∈ [1, 𝑌]. We get each entry in y by multiplying pairs of matching entries in x and w
and summing the results. Matching entries in x and w are the ones whose indices add up to a constant. This can be
visualized as flipping w, sliding it over x, and at each step writing their dot product into a single entry in y. Here is an
example in Julia you should be able to calculate by hand:

julia> w = KnetArray(reshape([1.0,2.0,3.0], (3,1,1,1)))
3×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3]
julia> x = KnetArray(reshape([1.0:7.0...], (7,1,1,1)))
7×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6,7]
julia> y = conv4(w, x)
5×1×1×1 Knet.KnetArray{Float64,4}: [10,16,22,28,34]

conv4 is the convolution operation in Knet (based on the CUDNN implementation). For reasons that will become
clear it works with 4-D and 5-D arrays, so we reshape our 1-D input vectors by adding extra singleton dimensions at
the end. The convolution of w=[1,2,3] and x=[1,2,3,4,5,6,7] gives y=[10,16,22,28,34]. For example, the third element
of y, 22, can be obtained by reversing w to [3,2,1] and taking its dot product starting with the third element of x,
[3,4,5].

Padding

In the last example, the input x had 7 dimensions, the output y had 5. In image processing applications we typically
want to keep x and y the same size. For this purpose we can provide a padding keyword argument to the conv4
operator. If padding=k, x will be assumed padded with k zeros on the left and right before the convolution, e.g.
padding=1 means treat x as [0 1 2 3 4 5 6 7 0]. The default padding is 0. For inputs in D-dimensions we can specify
padding with a D-tuple, e.g. padding=(1,2) for 2D, or a single number, e.g. padding=1 which is shorthand for
padding=(1,1). The result will have 𝑌 = 𝑋 + 2𝑃 −𝑊 + 1 elements where 𝑃 is the padding size. Therefore to
preserve the size of x when W=3 we should use padding=1.

julia> y = conv4(w, x; padding=(1,0))
7×1×1×1 Knet.KnetArray{Float64,4}: [4,10,16,22,28,34,32]

For example, to calculate the first entry of y, take the dot product of the inverted w, [3,2,1] with the first three elements
of the padded x, [0 1 2]. You can see that in order to preserve the input size, 𝑌 = 𝑋 , given a filter size 𝑊 , the padding
should be set to 𝑃 = (𝑊 − 1)/2. This will work if W is odd.

Stride

In the preceding examples we shift the inverted w by one position after each dot product. In some cases you may want
to skip two or more positions. The amount of skip is set by the stride keyword argument of the conv4 operation
(the default stride is 1). In the following example we set stride to W such that the consecutive filter applications are
non-overlapping:

julia> y = conv4(w, x; padding=(1,0), stride=3)
3×1×1×1 Knet.KnetArray{Float64,4}: [4,22,32]

Note that the output has the first, middle, and last values of the previous example, i.e. every third value is kept and the
rest are skipped. In general if stride=S and padding=P, the size of the output will be:

𝑌 = 1 +

⌊︂
𝑋 + 2𝑃 −𝑊

𝑆

⌋︂
Mode

44 Chapter 6. Convolutional Neural Networks

https://developer.nvidia.com/cudnn

Knet.jl Documentation, Release 0.7.2

The convolution operation we have used so far flips the convolution kernel before multiplying it with the input. To
take our first 1-D convolution example with

𝑦1 =

𝑥1𝑤𝑊 + 𝑥2𝑤𝑊−1 + 𝑥3𝑤𝑊−2 + . . .

𝑦2 =

𝑥2𝑤𝑊 + 𝑥3𝑤𝑊−1 + 𝑥4𝑤𝑊−2 + . . .

. . .

We could also perform a similar operation without kernel flipping:

𝑦1 =

𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 + . . .

𝑦2 =

𝑥2𝑤1 + 𝑥3𝑤2 + 𝑥4𝑤3 + . . .

. . .

This variation is called cross-correlation. The two modes are specified in Knet by choosing one of the following as the
value of the mode keyword:

• 0 for convolution

• 1 for cross-correlation

This option would be important if we were hand designing our filters. However the mode does not matter for CNNs
where the filters are learnt from data, the CNN will simply learn an inverted version of the filter if necessary.

More Dimensions

When the input x has multiple dimensions convolution is defined similarly. In particular the filter w has the same
number of dimensions but typically smaller size. The convolution operation flips w in each dimension and slides it
over x, calculating the sum of elementwise products at every step. The formulas we have given above relating the
output size to the input and filter sizes, padding and stride parameters apply independently for each dimension.

Knet supports 2D and 3D convolutions. The inputs and the filters have two extra dimensions at the end which means
we use 4D and 5D arrays for 2D and 3D convolutions. Here is a 2D convolution example:

julia> w = KnetArray(reshape([1.0:4.0...], (2,2,1,1)))
2×2×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
1.0 3.0
2.0 4.0

julia> x = KnetArray(reshape([1.0:9.0...], (3,3,1,1)))
3×3×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
1.0 4.0 7.0
2.0 5.0 8.0
3.0 6.0 9.0

julia> y = conv4(w, x)
2×2×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
23.0 53.0
33.0 63.0

To see how this result comes about, note that when you flip w in both dimensions you get:

4 2
3 1

6.2. Convolution 45

Knet.jl Documentation, Release 0.7.2

Multiplying this elementwise with the upper left corner of x:

1 4
2 5

and adding the results gives you the first entry 23.

The padding and stride options work similarly in multiple dimensions and can be specified as tuples: padding=(1,2)
means a padding width of 1 along the first dimension and 2 along the second dimension for a 2D convolution. You
can use padding=1 as a shorthand for padding=(1,1).

Multiple filters

So far we have been ignoring the extra dimensions at the end of our convolution arrays. Now we are ready to put them
to use. A D-dimensional input image is typically represented as a D+1 dimensional array with dimensions:

[𝑋1, . . . , 𝑋𝐷, 𝐶]

The first D dimensions 𝑋1 . . . 𝑋𝐷 determine the spatial extent of the image. The last dimension 𝐶 is the number of
channels (aka slices, frames, maps, filters). The definition and number of channels is application dependent. We use
C=3 for RGB images representing the intensity in three colors: red, green, and blue. For grayscale images we have a
single channel, C=1. If you were developing a model for chess, we could have C=12, each channel representing the
locations of a different piece type.

In an actual CNN we do not typically hand-code the filters. Instead we tell the network: “here are 1000 randomly
initialized filters, you go ahead and turn them into patterns useful for my task.” This means we usually work with
banks of multiple filters simultaneously and GPUs have optimized operations for such filter banks. The dimensions of
a typical filter bank are:

[𝑊1, . . . ,𝑊𝐷, 𝐼, 𝑂]

The first D dimensions 𝑊1 . . .𝑊𝐷 determine the spatial extent of the filters. The next dimension 𝐼 is the number of
input channels, i.e. the number of filters from the previous layer, or the number of color channels of the input image.
The last dimension 𝑂 is the number of output channels, i.e. the number of filters in this layer.

If we take an input of size [𝑋1, . . . , 𝑋𝐷, 𝐼] and apply a filter bank of size [𝑊1, . . . ,𝑊𝐷, 𝐼, 𝑂] using padding
[𝑃1, . . . , 𝑃𝐷] and stride [𝑆1, . . . , 𝑆𝐷] the resulting array will have dimensions:

[𝑊1, . . . ,𝑊𝐷, 𝐼, 𝑂] * [𝑋1, . . . , 𝑋𝐷, 𝐼]⇒ [𝑌1, . . . , 𝑌𝐷, 𝑂]

where 𝑌𝑖 = 1 +

⌊︂
𝑋𝑖 + 2𝑃𝑖 −𝑊𝑖

𝑆𝑖

⌋︂
As an example let’s start with an input image of 256 × 256 pixels and 3 RGB channels. We’ll first apply 25 filters of
size 5×5 and padding=2, then 50 filters of size 3×3 and padding=1, and finally 75 filters of size 3×3 and padding=1.
Here are the dimensions we will get:

[256, 256, 3] * [5, 5, 3, 25]⇒ [256, 256, 25]

[256, 256, 25] * [3, 3, 25, 50]⇒ [256, 256, 50]

[256, 256, 50] * [3, 3, 50, 75]⇒ [256, 256, 75]

Note that the number of input channels of the input data and the filter bank always match. In other words, a filter
covers only a small part of the spatial extent of the input but all of its channel depth.

Multiple instances

In addition to processing multiple filters in parallel, we will want to implement CNNs with minibatching, i.e. process
multiple inputs in parallel. A minibatch of D-dimensional images is represented as a D+2 dimensional array:

[𝑋1, . . . , 𝑋𝐷, 𝐼,𝑁]

46 Chapter 6. Convolutional Neural Networks

Knet.jl Documentation, Release 0.7.2

where I is the number of channels as before, and N is the number of images in a minibatch. The convolution implemen-
tation in Knet/CUDNN use D+2 dimensional arrays for both images and filters. We used 1 for the extra dimensions in
our first examples, in effect using a single channel and a single image minibatch.

If we apply a filter bank of size [𝑊1, . . . ,𝑊𝐷, 𝐼, 𝑂] to the minibatch given above the output size would be:

[𝑊1, . . . ,𝑊𝐷, 𝐼, 𝑂] * [𝑋1, . . . , 𝑋𝐷, 𝐼,𝑁]⇒ [𝑌1, . . . , 𝑌𝐷, 𝑂,𝑁]

where 𝑌𝑖 = 1 +

⌊︂
𝑋𝑖 + 2𝑃𝑖 −𝑊𝑖

𝑆𝑖

⌋︂
If we used a minibatch size of 128 in the previous example with 256× 256 images, the sizes would be:

[256, 256, 3, 128] * [5, 5, 3, 25]⇒ [256, 256, 25, 128]

[256, 256, 25, 128] * [3, 3, 25, 50]⇒ [256, 256, 50, 128]

[256, 256, 50, 128] * [3, 3, 50, 75]⇒ [256, 256, 75, 128]

basically adding an extra dimension of 128 at the end of each data array.

By the way, the arrays in this particular example already exceed 5GB of storage, so you would want to use a smaller
minibatch size if you had a K20 GPU with 4GB of RAM.

Note: All the dimensions given above are for column-major languages like Julia. CUDNN uses row-major notation,
so all the dimensions would be reversed, e.g. [𝑁, 𝐼,𝑋𝐷, . . . , 𝑋1].

Convolution vs matrix multiplication

Convolution can be turned into a matrix multiplication, where certain entries in the matrix are constrained to be the
same. The motivation is to be able to use efficient algorithms for matrix multiplication in order to perform convolution.
The drawback is the large amount of memory needed due to repeated entries or sparse representations.

Here is a matrix implementation for our first convolution example 𝑤 = [1 . . . 3], 𝑥 = [1 . . . 7], 𝑤 * 𝑥 =
[10, 16, 22, 28, 34]:

In this example we repeated the entries of the filter on multiple rows of a sparse matrix with shifted positions. Alter-
natively we can repeat the entries of the input to place each local patch on a separate column of an input matrix:

6.2. Convolution 47

Knet.jl Documentation, Release 0.7.2

The first approach turns w into a 𝑌 ×𝑋 sparse matrix, wheras the second turns x into a 𝑊 × 𝑌 dense matrix.

For 2-D images, typically the second approach is used: the local patches of the image used by convolution are stretched
out to columns of an input matrix, an operation commonly called im2col. Each convolutional filter is stretched out to
rows of a filter matrix. After the matrix multiplication the resulting array is reshaped into the proper output dimensions.
The following figure illustrates these operations on a small example:

It is also possible to go in the other direction, i.e. implement matrix multiplication (i.e. a fully connected layer) in terms
of convolution. This conversion is useful when we want to build a network that can be applied to inputs of different
sizes: the matrix multiplication would fail, but the convolution will give us outputs of matching sizes. Consider a fully
connected layer with a weight matrix W of size 𝐾 ×𝐷 mapping a D-dimensional input vector x to a K-dimensional
output vector y. We can consider each of the K rows of the W matrix a convolution filter. The following example
shows how we can reshape the arrays and use convolution for matrix multiplication:

julia> using Knet
julia> x = KnetArray(reshape([1.0:3.0...], (3,1)))
3×1 Knet.KnetArray{Float64,2}:
1.0
2.0

48 Chapter 6. Convolutional Neural Networks

Knet.jl Documentation, Release 0.7.2

3.0
julia> w = KnetArray(reshape([1.0:6.0...], (2,3)))
2×3 Knet.KnetArray{Float64,2}:
1.0 3.0 5.0
2.0 4.0 6.0

julia> y = w * x
2×1 Knet.KnetArray{Float64,2}:
22.0
28.0

julia> x2 = reshape(x, (3,1,1,1))
3×1×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
1.0
2.0
3.0

julia> w2 = KnetArray(reshape(Array(w)', (3,1,1,2)))
3×1×1×2 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
1.0
3.0
5.0

[:, :, 1, 2] =
2.0
4.0
6.0

julia> y2 = conv4(w2, x2; mode=1)
1×1×2×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
22.0

[:, :, 2, 1] =
28.0

In addition to computational concerns, these examples also show that a fully connected layer can emulate a convolu-
tional layer given the right weights and vice versa, i.e. convolution does not get us any extra representational power.
However it does get us representational and statistical efficiency, i.e. the functions we would like to approximate are
often expressed with significantly fewer parameters using convolutional layers and thus require fewer examples to
train.

Backpropagation

Convolution is a linear operation consisting of additions and multiplications, so its backward pass is not very compli-
cated except for the indexing. Just like the backward pass for matrix multiplication can be expressed as another matrix
multiplication, the backward pass for convolution (at least if we use stride=1) can be expressed as another convolu-
tion. We will derive the backward pass for a 1-D example using the cross-correlation mode (no kernel flipping) to
keep things simple. We will denote the cross-correlation operation with ⋆ to distinguish it from convolution denoted
with *. Here are the individual entries of 𝑦 = 𝑤 ⋆ 𝑥:

𝑦1 =

𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 + . . .

𝑦2 =

𝑥2𝑤1 + 𝑥3𝑤2 + 𝑥4𝑤3 + . . .

𝑦3 =

𝑥3𝑤1 + 𝑥4𝑤2 + 𝑥5𝑤3 + . . .

. . .

As you can see, because of weight sharing the same w entry is used in computing multiple y entries. This means
a single w entry effects the objective function through multiple paths and these effects need to be added. Denoting

6.2. Convolution 49

Knet.jl Documentation, Release 0.7.2

𝜕𝐽/𝜕𝑦𝑖 as 𝑦′𝑖 for brevity we have:

𝑤′
1 =

𝑥1𝑦
′
1 + 𝑥2𝑦

′
2 + . . .

𝑤′
2 =

𝑥2𝑦
′
1 + 𝑥3𝑦

′
2 + . . .

𝑤′
3 =

𝑥3𝑦
′
1 + 𝑥4𝑦

′
2 + . . .

. . .

which can be recognized as another cross-correlation operation, this time between 𝑥 and 𝑦′. This allows us to write
𝑤′ = 𝑦′ ⋆ 𝑥.

Alternatively, we can use the equivalent matrix multiplication operation from the last section to derive the backward
pass:

If 𝑟 is the matrix with repeated 𝑥 entries in this picture, we have 𝑦 = 𝑤𝑟. Remember that the backward pass for matrix
multiplication 𝑦 = 𝑤𝑟 is 𝑤′ = 𝑦′𝑟𝑇 :

which can be recognized as the matrix multiplication equivalent of the cross correlation operation 𝑤′ = 𝑦′ ⋆ 𝑥.

Here is the gradient for the input:

𝑥′
1 =

𝑤1𝑦
′
1

𝑥′
2 =

𝑤2𝑦
′
1 + 𝑤1𝑦

′
2

𝑥′
3 =

𝑤3𝑦
′
1 + 𝑤2𝑦

′
2 + 𝑤1𝑦

′
3

. . .

You can recognize this as a regular convolution between 𝑤 and 𝑦′ with some zero padding.

The following resources provide more detailed derivations of the backward pass for convolution:

50 Chapter 6. Convolutional Neural Networks

Knet.jl Documentation, Release 0.7.2

• Goodfellow, I. (2010). Technical report: Multidimensional, downsampled convolution for autoencoders. Tech-
nical report, Université de Montréal. 312.

• Bouvrie, J. (2006). Notes on convolutional neural networks.

• UFLDL tutorial and exercise on CNNs.

Pooling

It is common practice to use pooling (aka subsampling) layers in between convolution operations in CNNs. Pooling
looks at small windows of the input, and computes a single summary statistic, e.g. maximum or average, for each
window. A pooling layer basically says: tell me whether this feature exists in a certain region of the image, I don’t
care exactly where. This makes the output of the layer invariant to small translations of the input. Pooling layers use
large strides, typically as large as the window size, which reduces the size of their output.

Like convolution, pooling slides a small window of a given size over the input optionally padded with zeros skipping
stride pixels every step. In Knet by default there is no padding, the window size is 2, stride is equal to the window size
and the pooling operation is max. These default settings reduce each dimension of the input to half the size.

Pooling in 1-D

Here is a 1-D example:

julia> x = KnetArray(reshape([1.0:6.0...], (6,1,1,1)))
6×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6]
julia> pool(x)
3×1×1×1 Knet.KnetArray{Float64,4}: [2,4,6]

With window size and stride equal to 2, pooling considers the input windows [1, 2], [3, 4], [5, 6] and picks the maximum
in each window.

Window

The default and most commonly used window size is 2, however other window sizes can be specified using the
window keyword. For D-dimensional inputs the size can be specified using a D-tuple, e.g. window=(2,3) for
2-D, or a single number, e.g. window=3 which is shorthand for window=(3,3) in 2-D. Here is an example using
a window size of 3 instead of the default 2:

julia> x = KnetArray(reshape([1.0:6.0...], (6,1,1,1)))
6×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6]
julia> pool(x; window=3)
2×1×1×1 Knet.KnetArray{Float64,4}: [3, 6]

With a window and stride of 3 (the stride is equal to window size by default), pooling considers the input windows
[1, 2, 3], [4, 5, 6], and writes the maximum of each window to the output. If the input size is 𝑋 , and stride is equal to
the window size 𝑊 , the output will have 𝑌 = ⌊𝑋/𝑊 ⌋ elements.

Padding

The amount of zero padding is specified using the padding keyword argument just like convolution. Padding is 0 by
default. For D-dimensional inputs padding can be specified as a tuple such as padding=(1,2), or a single number
padding=1 which is shorthand for padding=(1,1) in 2-D. Here is a 1-D example:

julia> x = KnetArray(reshape([1.0:6.0...], (6,1,1,1)))
6×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6]

julia> pool(x; padding=(1,0))
4×1×1×1 Knet.KnetArray{Float64,4}: [1,3,5,6]

6.3. Pooling 51

http://www.iro.umontreal.ca/~lisa/pointeurs/convolution.pdf
http://people.csail.mit.edu/jvb/papers/cnn_tutorial.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork
http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionalNeuralNetwork

Knet.jl Documentation, Release 0.7.2

In this example, window=stride=2 by default and the padding size is 1, so the input is treated as [0, 1, 2, 3, 4, 5, 6, 0]
and split into windows of [0, 1], [2, 3], [4, 5], [6, 0] and the maximum of each window is written to the output.

With padding size 𝑃 , if the input size is 𝑋 , and stride is equal to the window size 𝑊 , the output will have 𝑌 =
⌊(𝑋 + 2𝑃)/𝑊 ⌋ elements.

Stride

The pooling stride is equal to the window size by default (as opposed to the convolution case, where it is 1 by default).
This is most common in practice but other strides can be specified using tuples e.g. stride=(1,2) or numbers e.g.
stride=1. Here is a 1-D example with a stride of 4 instead of the default 2:

julia> x = KnetArray(reshape([1.0:10.0...], (10,1,1,1)))
10×1×1×1 Knet.KnetArray{Float64,4}: [1,2,3,4,5,6,7,8,9,10]

julia> pool(x; stride=4)
4×1×1×1 Knet.KnetArray{Float64,4}: [2, 6, 10]

In general, when we have an input of size 𝑋 and pool with window size 𝑊 , padding 𝑃 , and stride 𝑆, the size of the
output will be:

𝑌 = 1 +

⌊︂
𝑋 + 2𝑃 −𝑊

𝑆

⌋︂
Pooling operations

There are three pooling operations defined by CUDNN used for summarizing each window:

• CUDNN_POOLING_MAX

• CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING

• CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING

These options can be specified as the value of the mode keyword argument to the pool operation. The default is 0
(max pooling) which we have been using so far. The last two compute averages, and differ in whether to include or
exclude the padding zeros in these averages. mode should be 1 for averaging including padding, and 2 for averaging
excluding padding. For example, with input 𝑥 = [1, 2, 3, 4, 5, 6], window=stride=2, and padding=1 we have
the following outputs with the three options:

mode=0 => [1,3,5,6]
mode=1 => [0.5, 2.5, 4.5, 3.0]
mode=2 => [1.0, 2.5, 4.5, 6.0]

More Dimensions

D-dimensional inputs are pooled with D-dimensional windows, the size of each output dimension given by the 1-D
formulas above. Here is a 2-D example with default options, i.e. window=stride=(2,2), padding=(0,0), mode=max:

julia> x = KnetArray(reshape([1.0:16.0...], (4,4,1,1)))
4×4×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
1.0 5.0 9.0 13.0
2.0 6.0 10.0 14.0
3.0 7.0 11.0 15.0
4.0 8.0 12.0 16.0

julia> pool(x)
2×2×1×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
6.0 14.0
8.0 16.0

52 Chapter 6. Convolutional Neural Networks

Knet.jl Documentation, Release 0.7.2

Multiple channels and instances

As we saw in convolution, each data array has two extra dimensions in addition to the spatial dimensions:
[𝑋1, . . . , 𝑋𝐷, 𝐼,𝑁] where 𝐼 is the number of channels and 𝑁 is the number of instances in a minibatch.

When the number of channels is greater than 1, the pooling operation is performed independently on each channel,
e.g. for each patch, the maximum/average in each channel is computed independently and copied to the output. Here
is an example with two channels:

julia> x = KnetArray(rand(4,4,2,1))
4×4×2×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
0.880221 0.738729 0.317231 0.990521
0.626842 0.562692 0.339969 0.92469
0.416676 0.403625 0.352799 0.46624
0.566254 0.634703 0.0632812 0.0857779

[:, :, 2, 1] =
0.300799 0.407623 0.26275 0.767884
0.217025 0.0055375 0.623168 0.957374
0.154975 0.246693 0.769524 0.628197
0.259161 0.648074 0.333324 0.46305

julia> pool(x)
2×2×2×1 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
0.880221 0.990521
0.634703 0.46624

[:, :, 2, 1] =
0.407623 0.957374
0.648074 0.769524

When the number of instances is greater than 1, i.e. we are using minibatches, the pooling operation similarly runs in
parallel on all the instances:

julia> x = KnetArray(rand(4,4,1,2))
4×4×1×2 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
0.155228 0.848345 0.629651 0.262436
0.729994 0.320431 0.466628 0.0293943
0.374592 0.662795 0.819015 0.974298
0.421283 0.83866 0.385306 0.36081

[:, :, 1, 2] =
0.0562608 0.598084 0.0231604 0.232413
0.71073 0.411324 0.28688 0.287947
0.997445 0.618981 0.471971 0.684064
0.902232 0.570232 0.190876 0.339076

julia> pool(x)
2×2×1×2 Knet.KnetArray{Float64,4}:
[:, :, 1, 1] =
0.848345 0.629651
0.83866 0.974298

[:, :, 1, 2] =
0.71073 0.287947
0.997445 0.684064

6.3. Pooling 53

Knet.jl Documentation, Release 0.7.2

Normalization

Draft...

Karpathy says: “Many types of normalization layers have been proposed for use in ConvNet architectures, some-
times with the intentions of implementing inhibition schemes observed in the biological brain. However, these lay-
ers have recently fallen out of favor because in practice their contribution has been shown to be minimal, if any.”
(http://cs231n.github.io/convolutional-networks/#norm) Batch normalization may be an exception, as it is used in
modern architectures.

Here are some references for normalization operations:

Implementations:

• Alex Krizhevsky’s cuda-convnet library API. (https://code.google.com/archive/p/cuda-
convnet/wikis/LayerParams.wiki#Local_response_normalization_layer_(same_map))

• http://caffe.berkeleyvision.org/tutorial/layers.html

• http://lasagne.readthedocs.org/en/latest/modules/layers/normalization.html

Divisive normalisation (DivN):

• S. Lyu and E. Simoncelli. Nonlinear image representation using divisive normalization. In CVPR, pages 1–8,
2008.

Local contrast normalization (LCN):

• N. Pinto, D. D. Cox, and J. J. DiCarlo. Why is real-world visual object recognition hard? PLoS Computational
Biology, 4(1), 2008.

• Jarrett, Kevin, et al. “What is the best multi-stage architecture for object recognition?.” Computer Vision,
2009 IEEE 12th International Conference on. IEEE, 2009. (http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-
09.pdf)

Local response normalization (LRN):

• Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep
convolutional neural networks.” Advances in neural information processing systems. 2012.
(http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2012_0534.pdf)

Batch Normalization: This is more of an optimization topic.

• Ioffe, Sergey, and Christian Szegedy. “Batch normalization: Accelerating deep network training by reducing
internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015). (http://arxiv.org/abs/1502.03167/)

Architectures

We have seen a number of new operations: convolution, pooling, filters etc. How to best put these together to form a
CNN is still an active area of research. In this section we summarize common patterns of usage in recent work based
on (Karpathy, 2016).

• The operations in convolutional networks are usually ordered into several layers of convolution-bias-activation-
pooling sequences. Note that the convolution-bias-activation sequence is an efficient way to implement the
common neural net function 𝑓(𝑤𝑥+ 𝑏) for a locally connected and weight sharing hidden layer.

• The convolutional layers are typically followed by a number of fully connected layers that end with a softmax
layer for prediction (if we are training for a classification problem).

54 Chapter 6. Convolutional Neural Networks

http://cs231n.github.io/convolutional-networks/#norm
https://code.google.com/archive/p/cuda-convnet/wikis/LayerParams.wiki#Local_response_normalization_layer_(same_map
https://code.google.com/archive/p/cuda-convnet/wikis/LayerParams.wiki#Local_response_normalization_layer_(same_map
http://caffe.berkeleyvision.org/tutorial/layers.html
http://lasagne.readthedocs.org/en/latest/modules/layers/normalization.html
http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf
http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2012_0534.pdf
http://cs231n.github.io/convolutional-networks

Knet.jl Documentation, Release 0.7.2

• It is preferrable to have multiple convolution layers with small filter sizes rather than a single layer with a large
filter size. Consider three convolutional layers with a filter size of 3×3. The units in the top layer have receptive
fields of size 7 × 7. Compare this with a single layer with a filter size of 7 × 7. The three layer architecture
has two advantages: The units in the single layer network is restricted to linear decision boundaries, whereas
the three layer network can be more expressive. Second, if we assume C channels, the parameter tensor for the
single layer network has size [7, 7, 𝐶, 𝐶] whereas the three layer network has three tensors of size [3, 3, 𝐶, 𝐶] i.e.
a smaller number of parameters. The one disadvantage of the three layer network is the extra storage required
to store the intermediate results for backpropagation.

• Thus common settings for convolution use 3× 3 filters with stride = padding = 1 (which incidentally
preserves the input size). The one exception may be a larger filter size used in the first layer which is applied to
the image pixels. This will save memory when the input is at its largest, and linear functions may be sufficient
to express the low level features at this stage.

• The pooling operation may not be present in every layer. Keep in mind that pooling destroys information
and having several convolutional layers without pooling may allow more complex features to be learnt. When
pooling is present it is best to keep the window size small to minimize information loss. The common settings
for pooling are window = stride = 2, padding = 0, which halves the input size in each dimension.

Beyond these general guidelines, you should look at the architectures used by successful models in the literature.
Some examples are LeNet (LeCun et al. 1998), AlexNet (Krizhevsky et al. 2012), ZFNet (Zeiler and Fergus, 2013),
GoogLeNet (Szegedy et al. 2014), VGGNet (Simonyan and Zisserman, 2014), and ResNet (He et al. 2015).

Exercises

• Design a filter that shifts a given image one pixel to right.

• Design an image filter that has 0 output in regions of uniform color, but nonzero output at edges where the color
changes.

• If your input consisted of two consecutive frames of video, how would you detect motion using convolution?

• Can you implement matrix-vector multiplication in terms of convolution? How about matrix-matrix multiplica-
tion? Do you need reshape operations?

• Can you implement convolution in terms of matrix multiplication?

• Can you implement elementwise broadcasting multiplication in terms of convolution?

References

• Some of this chapter was based on the excellent lecture notes from: http://cs231n.github.io/convolutional-
networks

• Christopher Olah’s blog has very good visual explanations (thanks to Melike Softa for the reference):
http://colah.github.io/posts/2014-07-Conv-Nets-Modular

• UFLDL (or its old version) is an online tutorial with programming examples and explicit gradient derivations
covering convolution, pooling, and CNNs.

• Hinton’s video lecture and presentation at Coursera (Lec 5): https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec5.pdf

• For a derivation of gradients see: http://people.csail.mit.edu/jvb/papers/cnn_tutorial.pdf or
http://www.iro.umontreal.ca/~lisa/pointeurs/convolution.pdf

• The CUDNN manual has more details about the convolution API: https://developer.nvidia.com/cudnn

• http://deeplearning.net/tutorial/lenet.html

6.6. Exercises 55

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385
http://cs231n.github.io/convolutional-networks
http://cs231n.github.io/convolutional-networks
http://colah.github.io/posts/2014-07-Conv-Nets-Modular
http://ufldl.stanford.edu
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution
http://ufldl.stanford.edu/tutorial/supervised/Pooling
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork
https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec5.pdf
http://people.csail.mit.edu/jvb/papers/cnn_tutorial.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/convolution.pdf
https://developer.nvidia.com/cudnn
http://deeplearning.net/tutorial/lenet.html

Knet.jl Documentation, Release 0.7.2

• http://www.denizyuret.com/2014/04/on-emergence-of-visual-cortex-receptive.html

• http://neuralnetworksanddeeplearning.com/chap6.html

• http://www.deeplearningbook.org/contents/convnets.html

• http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp

• http://scs.ryerson.ca/~aharley/vis/conv/ has a nice visualization of an MNIST CNN. (Thanks to Fatih Ozhama-
ratli for the reference).

• http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet visualizing popular CNN ar-
chitectures side by side with mxnet.

• http://cs231n.github.io/understanding-cnn visualizing what convnets learn.

• https://arxiv.org/abs/1603.07285 A guide to convolution arithmetic for deep learning

56 Chapter 6. Convolutional Neural Networks

http://www.denizyuret.com/2014/04/on-emergence-of-visual-cortex-receptive.html
http://neuralnetworksanddeeplearning.com/chap6.html
http://www.deeplearningbook.org/contents/convnets.html
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp
http://scs.ryerson.ca/~aharley/vis/conv/
http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet
http://cs231n.github.io/understanding-cnn
https://arxiv.org/abs/1603.07285

CHAPTER 7

Recurrent Neural Networks

References

• https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec7.pdf (coursera hinton)

• http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• http://colah.github.io/posts/2015-08-Understanding-LSTMs

• http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns

• https://en.wikipedia.org/wiki/Recurrent_neural_network

• https://www.willamette.edu/~gorr/classes/cs449/rnn1.html

• http://www.deeplearningbook.org/contents/rnn.html

• http://cs224d.stanford.edu/ (socher class on deep learning for nlp)

57

https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec7.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://www.willamette.edu/~gorr/classes/cs449/rnn1.html
http://www.deeplearningbook.org/contents/rnn.html
http://cs224d.stanford.edu/

Knet.jl Documentation, Release 0.7.2

58 Chapter 7. Recurrent Neural Networks

CHAPTER 8

Reinforcement Learning

References

• http://karpathy.github.io/2016/05/31/rl/

• https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

• http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

• http://videolectures.net/rldm2015_silver_reinforcement_learning/?q=david%20silver

• http://cs229.stanford.edu/notes/cs229-notes12.pdf

• http://cs.stanford.edu/people/karpathy/reinforcejs/index.html

• https://www.udacity.com/course/machine-learning-reinforcement-learning–ud820

• http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

• http://people.csail.mit.edu/regina/my_papers/TG15.pdf

• In http://karpathy.github.io/2015/05/21/rnn-effectiveness: For more about REINFORCE and more generally
Reinforcement Learning and policy gradient methods (which REINFORCE is a special case of) David Silver’s
class, or one of Pieter Abbeel’s classes. This is very much ongoing work but these hard attention models
have been explored, for example, in Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets,
Reinforcement Learning Neural Turing Machines, and Show Attend and Tell.

• In http://www.deeplearningbook.org/contents/ml.html: Please see Sutton and Barto (1998) or Bertsekasand Tsit-
siklis (1996) for information about reinforcement learning, and Mnih et al.(2013) for the deep learning approach
to reinforcement learning.

59

http://karpathy.github.io/2016/05/31/rl/
https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://videolectures.net/rldm2015_silver_reinforcement_learning/?q=david%20silver
http://cs229.stanford.edu/notes/cs229-notes12.pdf
http://cs.stanford.edu/people/karpathy/reinforcejs/index.html
https://www.udacity.com/course/machine-learning-reinforcement-learning--ud820
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://people.csail.mit.edu/regina/my_papers/TG15.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://www.deeplearningbook.org/contents/ml.html

Knet.jl Documentation, Release 0.7.2

60 Chapter 8. Reinforcement Learning

CHAPTER 9

Optimization

References

• http://www.deeplearningbook.org/contents/numerical.html (basic intro in 4.3)

• http://www.deeplearningbook.org/contents/optimization.html (8.1 generalization, 8.2 problems, 8.3 algorithms,
8.4 init, 8.5 adaptive lr, 8.6 approx 2nd order, 8.7 meta)

• http://andrew.gibiansky.com/blog/machine-learning/gauss-newton-matrix/ (great posts on optimization)

• https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (excellent tutorial on cg, gd, eigens etc)

• http://arxiv.org/abs/1412.6544 (Goodfellow paper)

• https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec6.pdf (hinton slides)

• https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec8.pdf (hinton slides)

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

• http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_Martens10.pdf

• http://arxiv.org/abs/1503.05671

• http://arxiv.org/abs/1412.1193

• http://www.springer.com/us/book/9780387303031 (nocedal and wright)

• http://www.nrbook.com (numerical recipes)

• https://maths-people.anu.edu.au/~brent/pub/pub011.html (without derivatives)

• http://stanford.edu/~boyd/cvxbook/ (only convex optimization)

61

http://www.deeplearningbook.org/contents/numerical.html
http://www.deeplearningbook.org/contents/optimization.html
http://andrew.gibiansky.com/blog/machine-learning/gauss-newton-matrix/
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://arxiv.org/abs/1412.6544
https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec6.pdf
https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec8.pdf
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_Martens10.pdf
http://arxiv.org/abs/1503.05671
http://arxiv.org/abs/1412.1193
http://www.springer.com/us/book/9780387303031
http://www.nrbook.com
https://maths-people.anu.edu.au/~brent/pub/pub011.html
http://stanford.edu/~boyd/cvxbook/

Knet.jl Documentation, Release 0.7.2

62 Chapter 9. Optimization

CHAPTER 10

Generalization

References

• http://www.deeplearningbook.org/contents/regularization.html

• https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec9.pdf

• https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec10.pdf

• http://blog.cambridgecoding.com/2016/03/24/misleading-modelling-overfitting-cross-validation-and-the-bias-
variance-trade-off/

63

http://www.deeplearningbook.org/contents/regularization.html
https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec9.pdf
https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec10.pdf
http://blog.cambridgecoding.com/2016/03/24/misleading-modelling-overfitting-cross-validation-and-the-bias-variance-trade-off/
http://blog.cambridgecoding.com/2016/03/24/misleading-modelling-overfitting-cross-validation-and-the-bias-variance-trade-off/

Knet.jl Documentation, Release 0.7.2

64 Chapter 10. Generalization

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

65

	Setting up Knet
	Installation
	Tips for developers
	Using Amazon AWS

	Introduction to Knet
	Contents
	Installation
	Examples
	Benchmarks
	Function reference
	Optimization methods
	Under the hood
	Contributing

	Backpropagation
	Partial derivatives
	Chain rule
	Multiple dimensions
	Multiple instances
	Stochastic Gradient Descent
	References

	Softmax Classification
	Classification
	Likelihood
	Softmax
	One-hot vectors
	Gradient of log likelihood
	MNIST example
	Representational power
	References

	Multilayer Perceptrons
	Stacking linear classifiers is useless
	Introducing nonlinearities
	Types of nonlinearities (activation functions)
	Representational power
	Matrix vs Neuron Pictures
	Programming Example
	References

	Convolutional Neural Networks
	Motivation
	Convolution
	Pooling
	Normalization
	Architectures
	Exercises
	References

	Recurrent Neural Networks
	References

	Reinforcement Learning
	References

	Optimization
	References

	Generalization
	References

	Indices and tables

