

 Navigation

 	
 index

 	
 next |

 	Knet.jl 0.7.2 documentation

Welcome to Knet.jl’s documentation!

Contents:

	Setting up Knet
	Installation

	Tips for developers

	Using Amazon AWS

	A Tutorial Introduction
	1. Functions and models

	2. Training a model

	3. Making models generic

	4. Defining new operators

	5. Training with minibatches

	6. MLP

	7. Convnet

	8. Conditional Evaluation

	9. Recurrent neural networks

	10. Training with sequences

	Some useful tables

	Backpropagation
	Partial derivatives

	Chain rule

	Multiple dimensions

	Multiple instances

	Stochastic Gradient Descent

	References

	Softmax Classification
	Classification

	Likelihood

	Softmax

	One-hot vectors

	Gradient of log likelihood

	MNIST example

	Representational power

	References

	Multilayer Perceptrons
	Stacking linear classifiers is useless

	Introducing nonlinearities

	Types of nonlinearities (activation functions)

	Representational power

	Matrix vs Neuron Pictures

	Programming Example

	References

	Convolutional Neural Networks
	Motivation

	Convolution

	Pooling

	Normalization

	Architectures

	Exercises

	References

	Recurrent Neural Networks
	References

	Reinforcement Learning
	References

	Optimization
	References

	Generalization
	References

Indices and tables

	Index

	Module Index

	Search Page

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knet.jl 0.7.2 documentation

Setting up Knet

Knet.jl is a deep learning package implemented in Julia, so you should
be able to run it on any machine that can run Julia. It has been
extensively tested on Linux machines with NVIDIA GPUs and CUDA
libraries, but most of it works on vanilla Linux and OSX machines as
well (currently cpu-only support for some operations is incomplete).
If you would like to try it on your own computer, please follow the
instructions on Installation. If you would like to try working
with a GPU and do not have access to one, take a look at Using Amazon
AWS. If you find a bug, please open a GitHub issue [https://github.com/denizyuret/Knet.jl/issues]. If you
would like to contribute to Knet, see Tips for developers. If you
need help, or would like to request a feature, please consider joining
the knet-users [https://groups.google.com/forum/#!forum/knet-users] mailing list.

Installation

First download and install the latest version of Julia from
http://julialang.org/downloads. As of this writing the latest
version is 0.4.6 and I have tested Knet using 64-bit Generic Linux
binaries and the Mac OS X package (dmg). Once Julia is installed,
type julia at the command prompt to start the Julia interpreter.
and type Pkg.add("Knet") to install Knet.

	$ julia

	

_

_ _ _(_)_ | A fresh approach to technical computing

	(_) | (_) (_) | Documentation: http://docs.julialang.org

	_ _ _| |_ __ _ | Type ”?help” for help.

| | | | | |/ _` | |

| |_| | | | (_| | | Version 0.4.5 (2016-03-18 00:58 UTC)

_/ |__’_|_|_|__’_| | Official http://julialang.org/ release

|__/ | x86_64-apple-darwin13.4.0

julia> Pkg.add(“Knet”)

By default Knet only installs the minimum requirements. Some examples
use extra packages like ArgParse, GZip and JLD. GPU support requires
the packages CUDArt, CUBLAS, CUDNN and CUSPARSE (0.3). These extra
packages can be installed using additional Pkg.add() commands. If
you have a GPU machine, you may need to type Pkg.build("Knet") to
compile the Knet GPU kernels. If you do not have a GPU machine, you
don’t need Pkg.build but you may get some warnings indicating the
lack of GPU support. Usually, these can be safely ignored. To make
sure everything has installed correctly, type Pkg.test("Knet")
which should take a couple of minutes kicking the tires. If all is
OK, continue with the next section, if not you can get help at the
knet-users [https://groups.google.com/forum/#!forum/knet-users] mailing list.

Tips for developers

Knet is an open-source project and we are always open to new
contributions: bug fixes, new machine learning models and operators,
inspiring examples, benchmarking results are all welcome. If you’d
like to contribute to the code base, here are some tips:

	Please get an account at github.com [https://www.github.com].

	Fork [https://help.github.com/articles/fork-a-repo] the Knet repository [https://github.com/denizyuret/Knet.jl].

	Point Julia to your fork using Pkg.clone("git@github.com:your-username/Knet.jl.git") and Pkg.build("Knet"). You may want to remove any old versions with Pkg.rm("Knet") first.

	Make sure your fork is up-to-date [https://help.github.com/articles/syncing-a-fork].

	Retrieve the latest version of the master branch using Pkg.checkout("Knet").

	Implement your contribution.

	Test your code using Pkg.test("Knet").

	Please submit your contribution using a pull request [https://help.github.com/articles/using-pull-requests].

Using Amazon AWS

If you don’t have access to a GPU machine, but would like to
experiment with one, Amazon Web Services [https://aws.amazon.com] is a possible solution. I
have prepared a machine image (AMI [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html]) with everything you need to run
Knet. Here are step by step instructions for launching a GPU instance
with a Knet image:

1. First, you need to sign up and create an account following the
instructions on Setting Up with Amazon EC2 [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html]. Once you have an
account, open the Amazon EC2 console at
https://console.aws.amazon.com/ec2 and login. You should see the
following screen:

[image: _images/aws01.png]
2. Make sure you select the “N. California” region in the upper right
corner, then click on AMIs on the lower left menu. At the search box,
choose “Public images” and search for “Knet”. Click on the latest
Knet image (Knet-0.7.2d as of this writing). You should see the
following screen with information about the Knet AMI. Click on the
“Launch” button on the upper left.

[image: _images/aws02.png]
Note: Instead of “Launch”, you may want to experiment with “Spot
Request [https://aws.amazon.com/ec2/spot/pricing]” under “Actions”
to get a lower price. You may also qualify for an educational grant [https://aws.amazon.com/grants] if you are a student or researcher.

3. You should see the “Step 2: Choose an Instance Type” page. Next to
“Filter by:” change “All instance types” to “GPU instances”. This
should reduce the number of instance types displayed to a few. Pick
the “g2.2xlarge” instance (“g2.8xlarge” has multiple GPUs and is more
expensive) and click on “Review and Launch”.

[image: _images/aws03.png]
4. This should take you to the “Step 7: Review Instance Launch”
page. You can just click “Launch” here:

[image: _images/aws04.png]
5. You should see the “key pair” pop up menu. In order to login to
your instance, you need an ssh key pair. If you have created a pair
during the initial setup you can use it with “Choose an existing key
pair”. Otherwise pick “Create a new key pair” from the pull down menu,
enter a name for it, and click “Download Key Pair”. Make sure you
keep the downloaded file, we will use it to login. After making sure
you have the key file (it has a .pem extension), click “Launch
Instances” on the lower right.

[image: _images/aws05.png]
6. We have completed the request. You should see the “Launch Status”
page. Click on your instance id under “Your instances are launching”:

[image: _images/aws06.png]
7. You should be taken to the “Instances” screen and see the address
of your instance where it says something like “Public DNS:
ec2-54-153-5-184.us-west-1.compute.amazonaws.com”.

[image: _images/aws07.png]

	Open up a terminal (or Putty if you are on Windows) and type:

ssh -i knetkey.pem ec2-user@ec2-54-153-5-184.us-west-1.compute.amazonaws.com

Replacing knetkey.pem with the path to your key file and
ec2-54-153-5-184 with the address of your machine. If all goes
well you should get a shell prompt on your machine instance.

9. There you can type julia, and at the julia prompt
Pkg.update() and Pkg.build("Knet") to get the latest versions
of the packages, as the versions in the AMI may be out of date:

[ec2-user@ip-172-31-6-90 ~]$ julia
 _
 _ _ _(_)_ | A fresh approach to technical computing
 (_) | (_) (_) | Documentation: http://docs.julialang.org
 _ _ _| |_ __ _ | Type "?help" for help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 0.4.2 (2015-12-06 21:47 UTC)
 _/ |__'_|_|_|__'_| | Official http://julialang.org/ release
|__/ | x86_64-unknown-linux-gnu

WARNING: Terminal not fully functional
julia> Pkg.update()
julia> Pkg.build("Knet")

Finally you can run Pkg.test("Knet") to make sure all is good.
This should take about a minute. If all tests pass, you are ready to
work with Knet:

julia> Pkg.test("Knet")
INFO: Testing Knet
INFO: Simple linear regression example
...
INFO: Knet tests passed

julia>

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knet.jl 0.7.2 documentation

A Tutorial Introduction

We will begin by a quick tutorial on Knet, going over the essential
tools for defining, training, and evaluating real machine learning
models in 10 short lessons. The examples cover linear regression,
softmax classification, multilayer perceptrons, convolutional and
recurrent neural networks. We will use these models to predict
housing prices in Boston, recognize handwritten digits, and teach the
computer to write like Shakespeare!

The goal is to get you to the point where you can create your own
models and apply machine learning to your own problems as quickly as
possible. So some of the details and exceptions will be skipped for
now. No prior knowledge of machine learning or Julia is necessary,
but general programming experience will be assumed. It would be best
if you follow along with the examples on your computer. Before we get
started please complete the installation instructions if you have not done so already.

1. Functions and models

See also

@knet, function, compile, forw, get, :colon

In this section, we will create our first Knet model, and learn how to
make predictions. To start using Knet, type using Knet at the
Julia prompt:

julia> using Knet
...

In Knet, a machine learning model is defined using a special function
syntax with the @knet macro. It may be helpful at this point to
review the Julia function [http://julia.readthedocs.org/en/release-0.4/manual/functions] syntax as the Knet syntax is based on it.
The following example defines a @knet function for a simple linear
regression model with 13 inputs and a single output. You can type this
definition at the Julia prompt, or you can copy and paste it into a
file which can be loaded into Julia using include("filename"):

@knet function linreg(x)
 w = par(dims=(1,13), init=Gaussian(0,0.1))
 b = par(dims=(1,1), init=Constant(0))
 return w * x .+ b
end

In this definition:

	@knet indicates that linreg is a Knet function, and not a regular Julia function [http://julia.readthedocs.org/en/release-0.4/manual/functions] or variable [http://julia.readthedocs.org/en/release-0.4/manual/variables].

	x is the only input argument. We will use a (13,1) column vector for this example.

	w and b are model parameters as indicated by the par constructor.

	dims and init are keyword arguments [http://julia.readthedocs.org/en/release-0.4/manual/functions/#keyword-arguments] to par.

	dims gives the dimensions of the parameter. Julia stores arrays
in column-major order, i.e. (1,13) specifies 1 row and 13 columns.

	init describes how the parameter should be initialized. It can be a user
supplied Julia array or one of the supported array fillers as in this example.

	The final return statement specifies the output of the Knet function.

	The * denotes matrix product and .+ denotes elementwise
broadcasting addition.

	Broadcasting operations [http://julia.readthedocs.org/en/release-0.4/manual/arrays/#broadcasting] like .+ can act on arrays
with different sizes, such as adding a vector to each column of a
matrix. They expand singleton dimensions in array arguments to
match the corresponding dimension in the other array without using
extra memory, and apply the operation elementwise.

	Unlike regular Julia functions, only a restricted set of
operators such as * and .+, and
statement types such as assignments and returns can be used in a
@knet function definition.

In order to turn linreg into a machine learning model that can be
trained with examples and used for predictions, we need to compile it:

julia> f1 = compile(:linreg) # The colon before linreg is required
...

To test our model let’s give it some input initialized with random
numbers:

julia> x1 = randn(13,1)
13x1 Array{Float64,2}:
 -0.556027
 -0.444383
 ...

To obtain the prediction of model f1 on input x1 we use the
forw function, which basically calculates w * x1 .+ b:

julia> forw(f1,x1)
1x1 Array{Float64,2}:
 -0.710651

We can query the model and see its parameters using get:

julia> get(f1,:w) # The colon before w is required
1x13 Array{Float64,2}:
 0.149138 0.0367563 ... -0.433747 0.0569829

julia> get(f1,:b)
1x1 Array{Float64,2}:
 0.0

We can also look at the input with get(f1,:x), reexamine the output
using the special :return symbol with get(f1,:return). In fact
using get, we can confirm that our model gives us the same answer
as an equivalent Julia expression:

julia> get(f1,:w) * get(f1,:x) .+ get(f1,:b)
1x1 Array{Float64,2}:
 -0.710651 DBG

You can see the internals of the compiled model looking at f1. It
consists of 5 low level operations:

julia> f1
1 Knet.Input() name=>x,dims=>(13,1),norm=>3.84375,...
2 Knet.Par() name=>w,dims=>(1,13),norm=>0.529962,...
3 Knet.Par() name=>b,dims=>(1,1),norm=>0 ,...
4 Knet.Dot(2,1) name=>##tmp#7298,args=>(w,x),dims=>(1,1),norm=>0.710651,...
5 Knet.Add(4,3) name=>return,args=>(##tmp#7298,b),dims=>(1,1),norm=>0.710651,...

You may have noticed the colons before Knet variable names like
:linreg, :w, :x, :b, etc. Any variable introduced in
a @knet macro is not a regular Julia variable so its name needs to be
escaped using the colon character [http://julia.readthedocs.org/en/release-0.4/manual/metaprogramming#symbols] in ordinary Julia code. In
contrast, f1 and x1 are ordinary Julia variables.

In this section, we have seen how to create a Knet model by compiling
a @knet function, how to perform a prediction given an input using
forw, and how to take a look at model parameters using get.
Next we will see how to train models.

2. Training a model

See also

back, update!, setp, lr, quadloss

OK, so we can define functions using Knet but why should we bother?
The thing that makes a Knet function different from an ordinary
function is that Knet functions are differentiable programs. This
means that for a given input not only can they compute an output, but
they can also compute which way their parameters should be modified to
approach some desired output. If we have some input-output data that
comes from an unknown function, we can train a Knet model to look like
this unknown function by manipulating its parameters.

We will use the Housing [http://archive.ics.uci.edu/ml/datasets/Housing] dataset from the UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml/datasets.html] to train our linreg model. The dataset has housing
related information for 506 neighborhoods in Boston from 1978. Each
neighborhood has 14 attributes, the goal is to use the first 13, such
as average number of rooms per house, or distance to employment
centers, to predict the 14’th attribute: median dollar value of the
houses. Here are the first 3 entries:

0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00
0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 21.60
0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 34.70
...

Let’s download the dataset and use readdlm to turn
it into a Julia array.

julia> url = "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data";
julia> file = Pkg.dir("Knet/data/housing.data");
julia> download(url, file)
 ...
julia> data = readdlm(file)' # Don't forget the final apostrophe to transpose data
14x506 Array{Float64,2}:
 0.00632 0.02731 0.02729 ... 0.06076 0.10959 0.04741
 18.0 0.0 0.0 ... 0.0 0.0 0.0
 ...

The resulting data matrix should have 506 columns representing
neighborhoods, and 14 rows representing the attributes. The last
attribute is the median house price to be predicted, so let’s separate
it:

julia> x = data[1:13,:]
13x506 Array{Float64,2}:...
julia> y = data[14,:]
1x506 Array{Float64,2}:...

Here we are using Julia’s array indexing [http://julia.readthedocs.org/en/release-0.4/manual/arrays/#indexing] notation to split the
data array into input x and output y. Inside the square
brackets 1:13 means grab the rows 1 through 13, and the :
character by itself means grab all the columns.

You may have noticed that the input attributes have very different
ranges. It is usually a good idea to normalize them by subtracting
the mean and dividing by the standard deviation:

julia> x = (x .- mean(x,2)) ./ std(x,2);

The mean() and std() functions compute the mean and
standard deviation of x. Their optional second argument gives the
dimensions to sum over, so mean(x) gives us the mean of the whole
array, mean(x,1) gives the mean of each column, and mean(x,2)
gives us the mean of each row.

It is also a good idea to split our dataset into training and test
subsets so we can estimate how well our model will do on unseen data.

julia> n = size(x,2);
julia> r = randperm(n);
julia> xtrn=x[:,r[1:400]];
julia> ytrn=y[:,r[1:400]];
julia> xtst=x[:,r[401:end]];
julia> ytst=y[:,r[401:end]];

n is set to the number of instances (columns) and r is set to
randperm(n) which gives a random permutation of
integers \(1\ldots n\). The first 400 indices in r will be
used for training, and the last 106 for testing.

Let’s see how well our randomly initialized model does before
training:

julia> ypred = forw(f1, xtst)
1x106 Array{Float64,2}:...
julia> quadloss(ypred, ytst)
307.9336...

The quadratic loss function quadloss()
computes \((1/2n) \sum (\hat{y} - y)^2\), i.e. half of the mean
squared difference between a predicted answer \(\hat{y}\) and the
desired answer \(y\). Given that \(y\) values range from 5 to
50, an RMSD [https://en.wikipedia.org/wiki/Root-mean-square_deviation] of \(\sqrt{2\times 307.9}=24.8\) is a pretty bad
score.

We would like to minimize this loss which should get the predicted
answers closer to the desired answers. To do this we first compute
the loss gradient for the parameters of f1 – this is the direction
in parameter space that maximally increases the loss. Then we move
the parameters in the opposite direction. Here is a simple function
that performs these steps:

function train(f, x, y)
 for i=1:size(x,2)
 forw(f, x[:,i])
 back(f, y[:,i], quadloss)
 update!(f)
 end
end

	The for loop grabs training instances one by one.

	forw computes the prediction for the i’th instance. This is required for the next step.

	back computes the loss gradient for each parameter in f for the i’th instance.

	update! moves each parameter opposite the gradient direction to reduce the loss.

Before training, it is important to set a good learning rate. The
learning rate controls how large the update steps are going to be: too
small and you’d wait for a long time, too large and train may
never converge. The setp() function is used to set
training options like the learning rate. Let’s
set the learning rate to 0.001 and train the model for 100 epochs
(i.e. 100 passes over the dataset):

julia> setp(f1, lr=0.001)
julia> for i=1:100; train(f1, xtrn, ytrn); end

This should take a few seconds, and this time our RMSD should be much
better:

julia> ypred = forw(f1, xtst)
1x106 Array{Float64,2}:...
julia> quadloss(ypred,ytst)
11.5989...
julia> sqrt(2*ans)
4.8164...

We can see what the model has learnt looking at the new weights:

julia> get(f1,:w)
1x13 Array{Float64,2}:
 -0.560346 0.924687 0.0446596 ... -1.89473 1.13219 -3.51418 DBG

The two weights with the most negative contributions are 13 and 8. We
can find out from UCI [http://archive.ics.uci.edu/ml/datasets/Housing] that these are:

13. LSTAT: % lower status of the population
 8. DIS: weighted distances to five Boston employment centres

And the two with the most positive contributions are 9 and 6:

9. RAD: index of accessibility to radial highways
6. RM: average number of rooms per dwelling

In this section we saw how to download data, turn it into a Julia
array, normalize and split it into input, output, train, and test
subsets. We wrote a simple training script using forw, back,
and update!, set the learning rate lr using setp, and
evaluated the model using the quadloss loss function. Now, there
are a lot more efficient and elegant ways to perform and analyze a
linear regression as you can find out from any decent statistics text.
However the basic method outlined in this section has the advantage of
being easy to generalize to models that are a lot larger and
complicated.

3. Making models generic

See also

keyword arguments, size inference

Hardcoding the dimensions of parameters in linreg makes it
awfully specific to the Housing dataset. Knet allows keyword
arguments in @knet function definitions to get around this problem:

@knet function linreg2(x; inputs=13, outputs=1)
 w = par(dims=(outputs,inputs), init=Gaussian(0,0.1))
 b = par(dims=(outputs,1), init=Constant(0))
 return w * x .+ b
end

Now we can use this model for another dataset that has, for example,
784 inputs and 10 outputs by passing these keyword arguments to
compile:

julia> f2 = compile(:linreg2, inputs=784, outputs=10);

Knet functions borrow the syntax for keyword arguments [http://julia.readthedocs.org/en/release-0.4/manual/functions/#keyword-arguments] from Julia,
and we will be using them in many contexts, so a brief aside is in
order: Keyword arguments are identified by name instead of position,
and they can be passed in any order (or not passed at all) following
regular (positional) arguments. In fact we have already seen
examples: dims and init are keyword arguments for par
(which has no regular arguments). Functions with keyword arguments
are defined using a semicolon in the signature, e.g. function
pool(x; window=2, padding=0). The semicolon is optional when the
function is called, e.g. both pool(x, window=5) or pool(x;
window=5) work. Unspecified keyword arguments take their default
values specified in the function definition. Extra keyword arguments
can be collected using three dots [http://julia.readthedocs.org/en/release-0.4/manual/faq/?highlight=splat#what-does-the-operator-do] in the function definition:
function pool(x; window=2, padding=0, o...), and passed in
function calls: pool(x; o...).

In addition to keyword arguments to make models more generic, Knet
implements size inference: Any dimension that relies on the input
size can be left as 0, which tells Knet to infer that dimension when
the first input is received. Leaving input dependent dimensions as 0,
and using a keyword argument to determine output size we arrive at a
fully generic version of linreg:

@knet function linreg3(x; out=1)
 w = par(dims=(out,0), init=Gaussian(0,0.1))
 b = par(dims=(out,1), init=Constant(0))
 return w * x .+ b
end

In this section, we have seen how to make @knet functions more generic
using keyword arguments and size inference. This will especially come
in handy when we are using them as new operators as described next.

4. Defining new operators

See also

@knet function as operator, soft

The key to controlling complexity in computer languages is
abstraction. Abstraction is the ability to name compound
structures built from primitive parts, so they too can be used as
primitives. In Knet we do this by using @knet functions not just as
models, but as new operators inside other @knet functions.

To illustrate this, we will implement a softmax classification model.
Softmax classification is basically linear regression with multiple
outputs followed by normalization. Here is how we can define it in
Knet:

@knet function softmax(x; out=10)
 z = linreg3(x; out=out)
 return soft(z)
end

The softmax model basically computes soft(w * x .+ b) with
trainable parameters w and b by calling linreg3 we defined
in the previous section. The out keyword parameter determines the
number of outputs and is passed from softmax to linreg3
unchanged. The number of inputs is left unspecified and is inferred
when the first input is received. The soft operator normalizes
its argument by exponentiating its elements and dividing each by their
sum.

In this section we saw an example of using a @knet function as a new
operator. Using the power of abstraction, not only can we avoid
repetition and shorten the amount of code for larger models, we make
the definitions a lot more readable and configurable, and gain a bunch
of reusable operators to boot. To see some example reusable operators
take a look at the Knet compound operators
table and see their definitions in kfun.jl [https://github.com/denizyuret/Knet.jl/blob/master/src/kfun.jl].

5. Training with minibatches

See also

minibatch, softloss, zeroone

We will use the softmax model to classify hand-written digits from the
MNIST [http://yann.lecun.com/exdb/mnist] dataset. Here are the first 8 images from MNIST, the goal is
to look at the pixels and classify each image as one of the digits
0-9:

[image: _images/firsteightimages.jpg]
The following loads the MNIST data:

julia> include(Pkg.dir("Knet/examples/mnist.jl"))
INFO: Loading MNIST...

Once loaded, the data is available as multi-dimensional Julia arrays:

julia> MNIST.xtrn
28x28x1x60000 Array{Float32,4}:...
julia> MNIST.ytrn
10x60000 Array{Float32,2}:...
julia> MNIST.xtst
28x28x1x10000 Array{Float32,4}:...
julia> MNIST.ytst
10x10000 Array{Float32,2}:...

We have 60000 training and 10000 testing examples. Each input x is a
28x28x1 array representing one image, where the first two numbers
represent the width and height in pixels, the third number is the
number of channels (which is 1 for grayscale images, 3 for RGB
images). The softmax model will treat each image as a 28*28*1=784
dimensional vector. The pixel values have been normalized to
\([0,1]\). Each output y is a ten-dimensional one-hot vector (a
vector that has a single non-zero component) indicating the correct
class (0-9) for a given image.

This is a much larger dataset than Housing. For computational
efficiency, it is not advisable to use these examples one at a time
during training like we did before. We will split the data into
groups of 100 examples called minibatches, and pass data to
forw and back one minibatch at a time instead of one instance
at a time. On my laptop, one epoch of training softmax on MNIST takes
about 0.34 seconds with a minibatch size of 100, 1.67 seconds with a
minibatch size of 10, and 10.5 seconds if we do not use minibatches.

Knet provides a small minibatch function to split the data:

function minibatch(x, y, batchsize)
 data = Any[]
 for i=1:batchsize:ccount(x)
 j=min(i+batchsize-1,ccount(x))
 push!(data, (cget(x,i:j), cget(y,i:j)))
 end
 return data
end

minibatch takes batchsize columns of x and y at a
time, pairs them up and pushes them into a data array. It works
for arrays of any dimensionality, treating the last dimension as
“columns”. Note that this type of minibatching is fine for small
datasets, but it requires holding two copies of the data in memory.
For problems with a large amount of data you may want to use
subarrays [http://julia.readthedocs.org/en/release-0.4/manual/arrays/] or iterables [http://julia.readthedocs.org/en/release-0.4/manual/interfaces/#iteration].

Here is minibatch in action:

julia> batchsize=100;
julia> trn = minibatch(MNIST.xtrn, MNIST.ytrn, batchsize)
600-element Array{Any,1}:...
julia> tst = minibatch(MNIST.xtst, MNIST.ytst, batchsize)
100-element Array{Any,1}:...

Each element of trn and tst is an x, y pair that contains 100
examples:

julia> trn[1]
(28x28x1x100 Array{Float32,4}: ...,
 10x100 Array{Float32,2}: ...)

Here are some simple train and test functions that use this type of
minibatched data. Note that they take the loss function as a third
argument and iterate through the x,y pairs (minibatches) in data:

function train(f, data, loss)
 for (x,y) in data
 forw(f, x)
 back(f, y, loss)
 update!(f)
 end
end

function test(f, data, loss)
 sumloss = numloss = 0
 for (x,ygold) in data
 ypred = forw(f, x)
 sumloss += loss(ypred, ygold)
 numloss += 1
 end
 return sumloss / numloss
end

Before training, we compile the model and set the learning rate to
0.2, which works well for this example. We use two new loss
functions: softloss computes the cross entropy loss,
\(E(p\log\hat{p})\), commonly used for training classification
models and zeroone computes the zero-one loss which is the
proportion of predictions that were wrong. I got 7.66% test error
after 40 epochs of training. Your results may be slightly different
on different machines, or different runs on the same machine because
of random initialization.

julia> model = compile(:softmax);
julia> setp(model; lr=0.2);
julia> for epoch=1:40; train(model, trn, softloss); end
julia> test(model, tst, zeroone)
0.0766...

In this section we saw how splitting the training data into
minibatches can speed up training. We trained our first
classification model on MNIST and used two new loss functions:
softloss and zeroone.

6. MLP

7. Convnet

Deprecated

See also

@knet as op, kwargs for @knet functions,
function options (f=:relu). splat.
lenet example, fast enough on cpu?

To illustrate this, we will use the LeNet [http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf] convolutional neural
network model designed to recognize handwritten digits. Here is the
LeNet model defined using only the primitive operators of Knet:

@knet function lenet1(x) # dims=(28,28,1,N)
 w1 = par(init=Xavier(), dims=(5,5,1,20))
 c1 = conv(w1,x) # dims=(24,24,20,N)
 b1 = par(init=Constant(0),dims=(1,1,20,1))
 a1 = add(b1,c1)
 r1 = relu(a1)
 p1 = pool(r1; window=2) # dims=(12,12,20,N)

 w2 = par(init=Xavier(), dims=(5,5,20,50))
 c2 = conv(w2,p1) # dims=(8,8,50,N)
 b2 = par(init=Constant(0),dims=(1,1,50,1))
 a2 = add(b2,c2)
 r2 = relu(a2)
 p2 = pool(r2; window=2) # dims=(4,4,50,N)

 w3 = par(init=Xavier(), dims=(500,800))
 d3 = dot(w3,p2) # dims=(500,N)
 b3 = par(init=Constant(0),dims=(500,1))
 a3 = add(b3,d3)
 r3 = relu(a3)

 w4 = par(init=Xavier(), dims=(10,500))
 d4 = dot(w4,r3) # dims=(10,N)
 b4 = par(init=Constant(0),dims=(10,1))
 a4 = add(b4,d4)
 return soft(a4) # dims=(10,N)
end

Don’t worry about the details of the model if you don’t know much
about neural nets. At 22 lines long, this model looks a lot more
complicated than our linear regression model. Compared to state of
the art image processing models however, it is still tiny. You
would not want to code a state-of-the-art model like GoogLeNet [http://arxiv.org/abs/1409.4842] using
these primitives.

If you are familiar with neural nets, and peruse the Knet
primitives table, you can see that the model has
two convolution-pooling layers (commonly used in image processing), a
fully connected relu layer and a final softmax output layer (I
separated them by blank lines to help). Wouldn’t it be nice to say
just that:

@knet function lenet2(x)
 a = conv_pool_layer(x)
 b = conv_pool_layer(a)
 c = relu_layer(b)
 return softmax_layer(c)
end

lenet2 is a lot more readable than lenet1. But before we can
use this definition, we have to solve two problems:

	conv_pool_layer etc. are not primitive operators, we need a way to add them to Knet.

	Each layer has some attributes, like init and dims, that we need to be able to configure.

Knet solves the first problem by allowing @knet functions to be used
as operators as well as models. For example, we can define
conv_pool_layer as an operator with:

@knet function conv_pool_layer(x)
 w = par(init=Xavier(), dims=(5,5,1,20))
 c = conv(w,x)
 b = par(init=Constant(0), dims=(1,1,20,1))
 a = add(b,c)
 r = relu(a)
 return pool(r; window=2)
end

With this definition, the the first a = conv_pool_layer(x)
operation in lenet2 will work exactly as we want, but not the
second (it has different convolution dimensions).

This brings us to the second problem, layer configuration. It would
be nice not to hard-code numbers like (5,5,1,20) in the definition
of a new operation like conv_pool_layer. Making these numbers
configurable would make such operations more reusable across models.
Even within the same model, you may want to use the same layer type in
more than one configuration. For example in lenet2 there is no
way to distinguish the two conv_pool_layer operations, but looking
at lenet1 we clearly want them to do different things.

Knet solves the layer configuration problem using keyword
arguments [http://julia.readthedocs.org/en/release-0.4/manual/functions/#keyword-arguments]. Knet functions borrow the keyword argument syntax from
Julia, and we will be using them in many contexts, so a brief aside is
in order: Keyword arguments are identified by name instead of
position, and they can be passed in any order (or not passed at all)
following regular (positional) arguments. In fact we have already
seen examples: dims and init are keyword arguments for par
(which has no regular arguments) and window is a keyword argument
for pool. Functions with keyword arguments are defined using a
semicolon in the signature, e.g. function pool(x; window=2,
padding=0). The semicolon is optional when the function is called,
e.g. both pool(x, window=5) or pool(x; window=5) work.
Unspecified keyword arguments take their default values specified in
the function definition. Extra keyword arguments can be collected
using three dots [http://julia.readthedocs.org/en/release-0.4/manual/faq/?highlight=splat#what-does-the-operator-do] in the function definition: function pool(x;
window=2, padding=0, o...), and passed in function calls: pool(x;
o...).

Here is a configurable version of conv_pool_layer using keyword
arguments:

@knet function conv_pool_layer(x; cwindow=0, cinput=0, coutput=0, pwindow=0)
 w = par(init=Xavier(), dims=(cwindow,cwindow,cinput,coutput))
 c = conv(w,x)
 b = par(init=Constant(0), dims=(1,1,coutput,1))
 a = add(b,c)
 r = relu(a)
 return pool(r; window=pwindow)
end

Similarly, we can define relu_layer and softmax_layer with
keyword arguments and make them more reusable. If you did this,
however, you’d notice that we are repeating a lot of code. That is
almost always a bad idea. Why don’t we define a generic_layer
that contains the shared code for all our layers:

@knet function generic_layer(x; f1=:dot, f2=:relu, wdims=(), bdims=(), winit=Xavier(), binit=Constant(0))
 w = par(init=winit, dims=wdims)
 y = f1(w,x)
 b = par(init=binit, dims=bdims)
 z = add(b,y)
 return f2(z)
end

Note that in this example we are not only making initialization
parameters like winit and binit configurable, we are also
making internal operators like relu and dot configurable
(their names need to be escaped with colons when passed as keyword
arguments). This generic layer will allow us to define many layer
types easily:

@knet function conv_pool_layer(x; cwindow=0, cinput=0, coutput=0, pwindow=0)
 y = generic_layer(x; f1=:conv, f2=:relu, wdims=(cwindow,cwindow,cinput,coutput), bdims=(1,1,coutput,1))
 return pool(y; window=pwindow)
end

@knet function relu_layer(x; input=0, output=0)
 return generic_layer(x; f1=:dot, f2=:relu, wdims=(output,input), bdims=(output,1))
end

@knet function softmax_layer(x; input=0, output=0)
 return generic_layer(x; f1=:dot, f2=:soft, wdims=(output,input), bdims=(output,1))
end

Finally we can define a working version of LeNet using 4 lines of code:

@knet function lenet3(x)
 a = conv_pool_layer(x; cwindow=5, cinput=1, coutput=20, pwindow=2)
 b = conv_pool_layer(a; cwindow=5, cinput=20, coutput=50, pwindow=2)
 c = relu_layer(b; input=800, output=500)
 return softmax_layer(c; input=500, output=10)
end

There are still a lot of hard-coded dimensions in lenet3. Some of
these, like the filter size (5), and the hidden layer size (500) can
be considered part of the model design. We should make them
configurable so the user can experiment with different sized models.
But some, like the number of input channels (1), and the input to the
relu_layer (800) are determined by input size. If we tried to
apply lenet3 to a dataset with different sized images, it would
break. Knet solves this problem using size inference: Any
dimension that relies on the input size can be left as 0, which tells
Knet to infer that dimension when the first input is received.
Leaving input dependent dimensions as 0, and using keyword arguments
to determine model size we arrive at a fully configurable version of
LeNet:

@knet function lenet4(x; cwin1=5, cout1=20, pwin1=2, cwin2=5, cout2=50, pwin2=2, hidden=500, nclass=10)
 a = conv_pool_layer(x; cwindow=cwin1, coutput=cout1, pwindow=pwin1)
 b = conv_pool_layer(a; cwindow=cwin2, coutput=cout2, pwindow=pwin2)
 c = relu_layer(b; output=hidden)
 return softmax_layer(c; output=nclass)
end

To compile an instance of lenet4 with particular dimensions, we
pass keyword arguments to compile:

julia> f = compile(:lenet4; cout1=30, cout2=60, hidden=600)
...

In this section we saw how to use @knet functions as new operators,
and configure them using keyword arguments. Using the power of
abstraction, not only did we cut the amount of code for the LeNet
model in half, we made its definition a lot more readable and
configurable, and gained a bunch of reusable operators to boot. I am
sure you can think of more clever ways to define LeNet and other
complex models using your own set of operators. To see some example
reusable operators take a look at the Knet compound operators table and see their definitions in kfun.jl [https://github.com/denizyuret/Knet.jl/blob/master/src/kfun.jl].

8. Conditional Evaluation

See also

if-else, runtime conditions (kwargs for forw), dropout

There are cases where you want to execute parts of a model
conditionally, e.g. only during training, or only during some parts
of the input in sequence models. Knet supports the use of runtime
conditions for this purpose. We will illustrate the use of
conditions by implementing a training technique called dropout [http://jmlr.org/papers/v15/srivastava14a.html] to
improve the generalization power of the LeNet model.

If you keep training the LeNet model on MNIST for about 30 epochs you
will observe that the training error drops to zero but the test error
hovers around 0.8%:

for epoch=1:100
 train(net, trn, softloss)
 println((epoch, test(net, trn, zeroone), test(net, tst, zeroone)))
end

(1,0.020466666666666505,0.024799999999999996)
(2,0.013649999999999905,0.01820000000000001)
...
(29,0.0,0.008100000000000003)
(30,0.0,0.008000000000000004)

This is called overfitting. The model has memorized the training
set, but does not generalize equally well to the test set.

Dropout prevents overfitting by injecting random noise into the model.
Specifically, for each forw call during training, dropout layers
placed between two operations replace a random portion of their input
with zeros, and scale the rest to keep the total output the same.
During testing random noise would degrade performance, so we would
like to turn dropout off. Here is one way to implement this in Knet:

@knet function drop(x; pdrop=0, o...)
 if dropout
 return x .* rnd(init=Bernoulli(1-pdrop, 1/(1-pdrop)))
 else
 return x
 end
end

The keyword argument pdrop specifies the probability of dropping an
input element. The if ... else ... end block causes conditional
evaluation [http://julia.readthedocs.org/en/release-0.4/manual/control-flow/#man-conditional-evaluation] the way one would expect. The variable dropout next to
if is a global condition variable: it is not declared as an argument
to the function. Instead, once a model with a drop operation is
compiled, the call to forw accepts dropout as an optional keyword
argument and passes it down as a global condition:

forw(model, input; dropout=true)

This means every time we call forw, we can change whether dropout
occurs or not. During test time, we would like to stop dropout, so we
can run the model with dropout=false:

forw(model, input; dropout=false)

By default, all unspecified condition variables are false, so we could
also omit the condition during test time:

forw(model, input) # dropout=false is assumed

Here is one way to add dropout to the LeNet model:

@knet function lenet5(x; pdrop=0.5, cwin1=5, cout1=20, pwin1=2, cwin2=5, cout2=50, pwin2=2, hidden=500, nclass=10)
 a = conv_pool_layer(x; cwindow=cwin1, coutput=cout1, pwindow=pwin1)
 b = conv_pool_layer(a; cwindow=cwin2, coutput=cout2, pwindow=pwin2)
 bdrop = drop(b; pdrop=pdrop)
 c = relu_layer(bdrop; output=hidden)
 return softmax_layer(c; output=nclass)
end

Whenever the condition variable dropout is true, this will replace
half of the entries in the b array with zeros. We need to modify
our train function to pass the condition to forw:

function train(f, data, loss)
 for (x,y) in data
 forw(f, x; dropout=true)
 back(f, y, loss)
 update!(f)
 end
end

Here is our training script. Note that we reduce the learning rate
whenever the test error gets worse, another precaution against
overfitting:

lrate = 0.1
decay = 0.9
lasterr = 1.0
net = compile(:lenet5)
setp(net; lr=lrate)

for epoch=1:100
 train(net, trn, softloss)
 trnerr = test(net, trn, zeroone)
 tsterr = test(net, tst, zeroone)
 println((epoch, lrate, trnerr, tsterr))
 if tsterr > lasterr
 lrate = decay*lrate
 setp(net; lr=lrate)
 end
 lasterr = tsterr
end

In 100 epochs, this should converge to about 0.5% error, i.e. reduce
the total number of errors on the 10K test set from around 80 to
around 50. Congratulations! This is fairly close to the state of the
art compared to other benchmark results on the MNIST [http://yann.lecun.com/exdb/mnist] website:

(1,0.1,0.020749999999999824,0.01960000000000001)
(2,0.1,0.013699999999999895,0.01600000000000001)
...
(99,0.0014780882941434613,0.0003333333333333334,0.005200000000000002)
(100,0.0014780882941434613,0.0003666666666666668,0.005000000000000002)

In this section, we saw how to use the if ... else ... end
construct to perform conditional evaluation in a model, where the
conditions are passed using keyword arguments to forw. We used
this to implement dropout, an effective technique to prevent
overfitting.

9. Recurrent neural networks

See also

read-before-write, simple rnn, lstm

In this section we will see how to implement recurrent neural
networks (RNNs) in Knet. A RNN is a class of neural network where
connections between units form a directed cycle, which allows them to
keep a persistent state (memory) over time. This gives them the
ability to process sequences of arbitrary length one element at a
time, while keeping track of what happened at previous elements.
Contrast this with feed forward nets like LeNet, which have a fixed
sized input, output and perform a fixed number of operations. See
(Karpathy, 2015 [http://karpathy.github.io/2015/05/21/rnn-effectiveness/]) for a nice introduction to RNNs.

To support RNNs, all local variables in Knet functions are static
variables [https://en.wikipedia.org/wiki/Static_variable], i.e. their values are preserved between calls unless
otherwise specified. It turns out this is the only language feature
you need to define RNNs. Here is a simple example:

@knet function rnn1(x; hsize=100, xsize=50)
 a = par(init=Xavier(), dims=(hsize, xsize))
 b = par(init=Xavier(), dims=(hsize, hsize))
 c = par(init=Constant(0), dims=(hsize, 1))
 d = a * x .+ b * h .+ c
 h = relu(d)
end

Notice anything strange? The first three lines define three model
parameters. Then the fourth line sets d to a linear combination
of the input x and the hidden state h. But h hasn’t been
defined yet. Exactly! Having read-before-write variables is the only
thing that distinguishes an RNN from feed-forward models like LeNet.

The way Knet handles read-before-write variables is by initializing
them to 0 arrays before any input is processed, then preserving the
values between the calls. Thus during the first call in the above
example, h would start as 0, d would be set to a * x .+ c,
which in turn would cause h to get set to relu(a * x .+ c).
During the second call, this value of h would be remembered and
used, thus making the value of h at time t dependent on
its value at time t-1.

It turns out simple RNNs like rnn1 are not very good at
remembering things for a very long time. There are some techniques to
improve their retention based on better initialization [http://arxiv.org/abs/1504.00941] or smarter
updates [http://arxiv.org/abs/1511.06464], but currently the most popular solution is using more
complicated units like LSTMs [http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf] and GRUs [http://arxiv.org/pdf/1406.1078v3]. These units control the
information flow into and out of the unit using gates similar to
digital circuits and can model long term dependencies. See (Colah,
2015 [http://colah.github.io/posts/2015-08-Understanding-LSTMs]) for a good overview of LSTMs.

Defining an LSTM in Knet is almost as concise as writing its
mathematical definition:

@knet function lstm(x; fbias=1, o...)
 input = wbf2(x,h; o..., f=:sigm)
 forget = wbf2(x,h; o..., f=:sigm, binit=Constant(fbias))
 output = wbf2(x,h; o..., f=:sigm)
 newmem = wbf2(x,h; o..., f=:tanh)
 cell = input .* newmem + cell .* forget
 h = tanh(cell) .* output
 return h
end

The wbf2 operator applies an affine function (linear function +
bias) to its two inputs followed by an activation function (specified
by the f keyword argument). Try to define this operator yourself
as an exercise, (see kfun.jl [https://github.com/denizyuret/Knet.jl/blob/master/src/kfun.jl] for the Knet definition).

The LSTM has an input gate, forget gate and an output gate that
control information flow. Each gate depends on the current input
x, and the last output h. The memory value cell is
computed by blending a new value newmem with its old value under
the control of input and forget gates. The output gate
decides how much of the cell is shared with the outside world.

If an input gate element is close to 0, the corresponding element
in the new input x will have little effect on the memory cell. If
a forget gate element is close to 1, the contents of the
corresponding memory cell can be preserved for a long time. Thus the
LSTM has the ability to pay attention to the current input, or
reminisce in the past, and it can learn when to do which based on the
problem.

In this section we introduced simple recurrent neural networks and
LSTMs. We saw that having static variables is the only language
feature necessary to implement RNNs. Next we will look at how to
train them.

10. Training with sequences

(Karpathy, 2015 [http://karpathy.github.io/2015/05/21/rnn-effectiveness/]) has lots of fun examples showing how character
based language models based on LSTMs are surprisingly adept at
generating text in many genres, from Wikipedia articles to C programs.
To demonstrate training with sequences, we’ll implement one of these
examples and build a model that can write like Shakespeare! After
training on “The Complete Works of William Shakespeare” for less than
an hour, here is a sample of brilliant writing you can expect from
your model:

LUCETTA. Welcome, getzing a knot. There is as I thought you aim
 Cack to Corioli.
MACBETH. So it were timen'd nobility and prayers after God'.
FIRST SOLDIER. O, that, a tailor, cold.
DIANA. Good Master Anne Warwick!
SECOND WARD. Hold, almost proverb as one worth ne'er;
 And do I above thee confer to look his dead;
 I'll know that you are ood'd with memines;
 The name of Cupid wiltwite tears will hold
 As so I fled; and purgut not brightens,
 Their forves and speed as with these terms of Ely
 Whose picture is not dignitories of which,
 Their than disgrace to him she is.
GOBARIND. O Sure, ThisH more.,
 wherein hath he been not their deed of quantity,
 No ere we spoke itation on the tent.
 I will be a thought of base-thief;
 Then tears you ever steal to have you kindness.
 And so, doth not make best in lady,
 Your love was execreed'd fray where Thoman's nature;
 I have bad Tlauphie he should sray and gentle,

First let’s download “The Complete Works of William Shakespeare” from
Project Gutenberg [https://www.gutenberg.org]:

julia> using Requests
julia> url="http://gutenberg.pglaf.org/1/0/100/100.txt";
julia> text=get(url).data
5589917-element Array{UInt8,1}:...

The text array now has all 5,589,917 characters of “The Complete
Works” in a Julia array. If get does not work, you can download
100.txt by other means and use text=readall("100.txt") on the
local file. We will use one-hot vectors to represent characters, so
let’s map each character to an integer index \(1\ldots n\):

julia> char2int = Dict();
julia> for c in text; get!(char2int, c, 1+length(char2int)); end
julia> nchar = length(char2int)
92

Dict is Julia’s standard associative collection [http://julia.readthedocs.org/en/release-0.4/stdlib/collections/#associative-collections] for mapping
arbitrary keys to values. get!(dict,key,default) returns the
value for the given key, storing key=>default in dict if no
mapping for the key is present. Going over the text array we
discover 92 unique characters and map them to integers \(1\ldots
92\).

We will train our RNN to read characters from text in sequence,
and predict the next character after each. The training will go much
faster if we can use the minibatching trick we saw earlier and process
multiple inputs at a time. For that, we split the text array into
batchsize equal length subsequences. Then the first batch has the
first character from each subsequence, second batch contains the
second characters etc. Each minibatch is represented by a nchar x
batchsize matrix with one-hot columns. Here is a function that
implements this type of sequence minibatching:

function seqbatch(seq, dict, batchsize)
 data = Any[]
 T = div(length(seq), batchsize)
 for t=1:T
 d=zeros(Float32, length(dict), batchsize)
 for b=1:batchsize
 c = dict[seq[t + (b-1) * T]]
 d[c,b] = 1
 end
 push!(data, d)
 end
 return data
end

Let’s use it to split text into minibatches of size 128:

julia> batchsize = 128;
julia> data = seqbatch(text, char2int, batchsize)
43671-element Array{Any,1}:...
julia> data[1]
92x128 Array{Float32,2}:...

The data array returned has T=length(text)/batchsize minibatches.
The columns of minibatch data[t] refer to characters t,
t+T, t+2T, ... from text. During training, when
data[t] is the input, data[t+1] will be the desired output.
Now that we have the data ready to go, let’s talk about RNN training.

RNN training is a bit more involved than training feed-forward models.
We still have the prediction, gradient calculation and update steps,
but not all three steps should be performed after every input. Here
is a basic algorithm: Go forward nforw steps, remembering the
desired outputs and model state, then perform nforw back steps
accumulating gradients, finally update the parameters and reset the
network for the next iteration:

function train(f, data, loss; nforw=100, gclip=0)
 reset!(f)
 ystack = Any[]
 T = length(data) - 1
 for t = 1:T
 x = data[t]
 y = data[t+1]
 sforw(f, x; dropout=true)
 push!(ystack, y)
 if (t % nforw == 0 || t == T)
 while !isempty(ystack)
 ygold = pop!(ystack)
 sback(f, ygold, loss)
 end
 update!(f; gclip=gclip)
 reset!(f; keepstate=true)
 end
 end
end

Note that we use sforw and sback instead of forw and
back during sequence training: these save and restore internal
state to allow multiple forward steps followed by multiple backward
steps. reset! is necessary to zero out or recover internal state
before a sequence of forward steps. ystack is used to store gold
answers. The gclip is for gradient clipping, a common RNN
training strategy to keep the parameters from diverging.

With data and training script ready, all we need is a model. We will
define a character based RNN language model using an LSTM:

@knet function charlm(x; embedding=0, hidden=0, pdrop=0, nchar=0)
 a = wdot(x; out=embedding)
 b = lstm(a; out=hidden)
 c = drop(b; pdrop=pdrop)
 return wbf(c; out=nchar, f=:soft)
end

wdot multiplies the one-hot representation x of the input
character with an embedding matrix and turns it into a dense vector of
size embedding. We apply an LSTM of size hidden to this dense
vector, and dropout the result with probability pdrop. Finally
wbf applies softmax to a linear function of the LSTM output to get
a probability vector of size nchar for the next character.

(Karpathy, 2015 [http://karpathy.github.io/2015/05/21/rnn-effectiveness/]) uses not one but several LSTM layers to simulate
Shakespeare. In Knet, we can define a multi-layer LSTM model using
the high-level operator repeat:

@knet function lstmdrop(a; pdrop=0, hidden=0)
 b = lstm(a; out=hidden)
 return drop(b; pdrop=pdrop)
end

@knet function charlm2(x; nlayer=0, embedding=0, hidden=0, pdrop=0, nchar=0)
 a = wdot(x; out=embedding)
 c = repeat(a; frepeat=:lstmdrop, nrepeat=nlayer, hidden=hidden, pdrop=pdrop)
 return wbf(c; out=nchar, f=:soft)
end

In charlm2, the repeat instruction will perform the
frepeat operation nrepeat times starting with input a.
Using charlm2 with nlayer=1 would be equivalent to the
original charlm.

In the interest of time we will start with a small single layer model.
With the following parameters, 10 epochs of training takes about 35-40
minutes on a K20 GPU:

julia> net = compile(:charlm; embedding=256, hidden=512, pdrop=0.2, nchar=nchar);
julia> setp(net; lr=1.0)
julia> for i=1:10; train(net, data, softloss; gclip=5.0); end

After spending this much time training a model, you probably want to
save it. Knet uses the JLD [https://github.com/JuliaLang/JLD.jl] module to save and load models and data.
Calling clean(model) during a save is recommended to strip the
model of temporary arrays which may save a lot of space. Don’t forget
to save the char2int dictionary, otherwise it will be difficult to
interpret the output of the model:

julia> using JLD
julia> JLD.save("charlm.jld", "model", clean(net), "dict", char2int);
julia> net2 = JLD.load("charlm.jld", "model") # should create a copy of net
...

TODO: put load/save and other fns in the function table.

Finally, to generate the Shakespearean output we promised, we need to
implement a generator. The following generator samples a character
from the probability vector output by the model, prints it and feeds
it back to the model to get the next character. Note that we use
regular forw in generate, sforw is only necessary when
training RNNs.

function generate(f, int2char, nchar)
 reset!(f)
 x=zeros(Float32, length(int2char), 1)
 y=zeros(Float32, length(int2char), 1)
 xi = 1
 for i=1:nchar
 copy!(y, forw(f,x))
 x[xi] = 0
 xi = sample(y)
 x[xi] = 1
 print(int2char[xi])
 end
 println()
end

function sample(pdist)
 r = rand(Float32)
 p = 0
 for c=1:length(pdist)
 p += pdist[c]
 r <= p && return c
 end
end

julia> int2char = Array(Char, length(char2int));
julia> for (c,i) in char2int; int2char[i] = Char(c); end
julia> generate(net, int2char, 1024) # should generate 1024 chars of Shakespeare

TODO: In this section...

Some useful tables

Table 1: Primitive Knet operators

	Operator
	Description

	par()
	a parameter array, updated during training; kwargs: dims, init

	rnd()
	a random array, updated every call; kwargs: dims, init

	arr()
	a constant array, never updated; kwargs: dims, init

	dot(A,B)
	matrix product of A and B; alternative notation: A * B

	add(A,B)
	elementwise broadcasting addition of arrays A and B, alternative notation: A .+ B

	mul(A,B)
	elementwise broadcasting multiplication of arrays A and B; alternative notation: A .* B

	conv(W,X)
	convolution with filter W and input X; kwargs: padding=0, stride=1, upscale=1, mode=CUDNN_CONVOLUTION

	pool(X)
	pooling; kwargs: window=2, padding=0, stride=window, mode=CUDNN_POOLING_MAX

	axpb(X)
	computes a*x^p+b; kwargs: a=1, p=1, b=0

	copy(X)
	copies X to output.

	relu(X)
	rectified linear activation function: (x > 0 ? x : 0)

	sigm(X)
	sigmoid activation function: 1/(1+exp(-x))

	soft(X)
	softmax activation function: (exp xi) / (Σ exp xj)

	tanh(X)
	hyperbolic tangent activation function.

Table 2: Compound Knet operators

These operators combine several primitive operators and typically hide
the parameters in their definitions to make code more readable.

	Operator
	Description

	wdot(x)
	apply a linear transformation w * x; kwargs: out=0, winit=Xavier()

	bias(x)
	add a bias x .+ b; kwargs: binit=Constant(0)

	wb(x)
	apply an affine function w * x .+ b; kwargs: out=0, winit=Xavier(), binit=Constant(0)

	wf(x)
	linear transformation + activation function f(w * x); kwargs: f=:relu, out=0, winit=Xavier()

	wbf(x)
	affine function + activation function f(w * x .+ b); kwargs: f=:relu, out=0, winit=Xavier(), binit=Constant(0)

	wbf2(x,y)
	affine function + activation function for two variables f(a*x .+ b*y .+ c); kwargs:f=:sigm, out=0, winit=Xavier(), binit=Constant(0)

	wconv(x)
	apply a convolution conv(w,x); kwargs: out=0, window=0, padding=0, stride=1, upscale=1, mode=CUDNN_CONVOLUTION, cinit=Xavier()

	cbfp(x)
	convolution, bias, activation function, and pooling; kwargs: f=:relu, out=0, cwindow=0, pwindow=0, cinit=Xavier(), binit=Constant(0)

	drop(x)
	replace pdrop of the input with 0 and scale the rest with 1/(1-pdrop); kwargs: pdrop=0

	lstm(x)
	LSTM [http://colah.github.io/posts/2015-08-Understanding-LSTMs]; kwargs:fbias=1, out=0, winit=Xavier(), binit=Constant(0)

	irnn(x)
	IRNN [http://arxiv.org/abs/1504.00941]; kwargs:scale=1, out=0, winit=Xavier(), binit=Constant(0)

	gru(x)
	GRU [http://arxiv.org/abs/1412.3555]; kwargs:out=0, winit=Xavier(), binit=Constant(0)

	repeat(x)
	apply operator frepeat to input x nrepeat times; kwargs: ``frepeat=nothing, nrepeat=0

Table 3: Random distributions

This table lists random distributions and other array fillers that can
be used to initalize parameters (used with the init keyword
argument for par).

	Distribution
	Description

	Bernoulli(p,scale)
	output scale with probability p and 0 otherwise

	Constant(val)
	fill with a constant value val

	Gaussian(mean, std)
	normally distributed random values with mean mean and standard deviation std

	Identity(scale)
	identity matrix multiplied by scale

	Uniform(min, max)
	uniformly distributed random values between min and max

	Xavier()
	Xavier [http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf] initialization: deprecated, please use Glorot. Uniform in \([-\sqrt{3/n},\sqrt{3/n}]\) where n=length(a)/size(a)[end]

Table 4: Loss functions

	Function
	Description

	softloss(ypred,ygold)
	Cross entropy loss: \(E[p\log\hat{p}]\)

	quadloss(ypred,ygold)
	Quadratic loss: \(½ E[(y-\hat{y})^2]\)

	zeroone(ypred,ygold)
	Zero-one loss: \(E[\arg\max y \neq \arg\max\hat{y}]\)

Table 5: Training options

We can manipulate how exactly update! behaves by setting some
training options like the learning rate lr. I’ll explain the
mathematical motivation elsewhere, but algorithmically these training
options manipulate the dw array (sometimes using an auxiliary
array dw2) before the subtraction to improve the loss faster.
Here is a list of training options supported by Knet and how they
manipulate dw:

	Option
	Description

	lr
	Learning rate: dw *= lr

	l1reg
	L1 regularization: dw += l1reg * sign(w)

	l2reg
	L2 regularization: dw += l2reg * w

	adagrad
	Adagrad (boolean): dw2 += dw .* dw; dw = dw ./ (1e-8 + sqrt(dw2))

	rmsprop
	Rmsprop (boolean): dw2 = dw2 * 0.9 + 0.1 * dw .* dw; dw = dw ./ (1e-8 + sqrt(dw2))

	adam
	Adam (boolean); see http://arxiv.org/abs/1412.6980

	momentum
	Momentum: dw += momentum * dw2; dw2 = dw

	nesterov
	Nesterov: dw2 = nesterov * dw2 + dw; dw += nesterov * dw2

Table 6: Summary of modeling related functions

	Function
	Description

	@kfun function ... end
	defines a @knet function that can be used as a model or a new operator

	if cond ... else ... end
	conditional evaluation in a @knet function with condition variable cond supplied by forw

	compile(:kfun; o...)
	creates a model given @knet function kfun; kwargs used for model configuration

	forw(f,x; o...)
	returns the prediction of model f on input x; kwargs used for setting conditions

	back(f,ygold,loss)
	computes the loss gradients for f parameters based on desired output ygold and loss function loss

	update!(f)
	updates the parameters of f using the gradients computed by back to reduce loss

	get(f,:w)
	return parameter w of model f

	setp(f; opt=val...)
	sets training options for model f

	minibatch(x,y,batchsize)
	split data into minibatches

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knet.jl 0.7.2 documentation

Backpropagation

Note

Concepts: supervised learning, training data, regression,
squared error, linear regression, stochastic gradient descent

Arthur Samuel, the author of the first self-learning checkers program,
defined machine learning as a “field of study that gives computers the
ability to learn without being explicitly programmed”. This leaves
the definition of learning a bit circular. Tom M. Mitchell provided a
more formal definition: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance
measure P if its performance at tasks in T, as measured by P, improves
with experience E,” where the task, the experience, and the
performance measure are to be specified based on the problem.

We will start with supervised learning, where the task is to
predict the output of an unknown system given its input, and the
experience consists of a set of example input-output pairs, also known
as the training data. When the outputs are numeric such problems
are called regression. In linear regression we use a linear
function as our model:

\[\hat{y} = W x + b\]

Here \(x\) is the model input, \(\hat{y}\) is the model
output, \(W\) is a matrix of weights, and \(b\) is a vector of
biases. By adjusting the parameters of this model, i.e. the weights
and the biases, we can make it compute any linear function of
\(x\).

“All models are wrong, but some models are useful.” George Box
famously said. We do not necessarily know that the system whose
output we are trying to predict is governed by a linear
relationship. All we know is a finite number of input-output examples:

\[\mathcal{D}=\{(x_1,y_1),\ldots,(x_N,y_N)\}\]

It is just that we have to start model building somewhere and the set
of all linear functions is a good place to start for now.

A commonly used performance measure in regression problems is the
squared error, i.e. the average squared difference between the
actual output values and the ones predicted by the model. So our goal
is to find model parameters that minimize the squared error:

\[\arg\min_{W,b} \frac{1}{N} \sum_{n=1}^N \| \hat{y}_n - y_n \|^2\]

Where \(\hat{y}_n = W x_n + b\) denotes the output predicted by
the model for the \(n\) th example.

There are several methods to find the solution to the problem of
minimizing squared error. Here we will present the stochastic
gradient descent (SGD) method because it generalizes well to more
complex models. In SGD, we take the training examples one at a time
(or in small groups called minibatches), compute the gradient of the
error with respect to the parameters, and move the parameters a small
step in the direction that will decrease the error. First some notes
on the math.

Partial derivatives

When we have a function with several inputs and one output, we can
look at how the function value changes in response to a small change
in one of its inputs holding the rest fixed. This is called a partial
derivative. Let us consider the squared error for the \(n\) th
input as an example:

\[J = \| W x_n + b - y_n \|^2\]

So the partial derivative \(\partial J / \partial w_{ij}\) would
tell us how many units \(J\) would move if we moved \(w_{ij}\)
in \(W\) one unit (at least for small enough units). Here is a
more graphical representation:

[image: _images/linregforw.jpg]
In this figure, it is easier to see that the machinery that generates
\(J\) has many “inputs”. In particular we can talk about how
\(J\) is effected by changing parameters \(W\) and \(b\),
as well as changing the input \(x\), the model output
\(\hat{y}\), the desired output \(y\), or intermediate values
like \(z\) or \(r\). So partial derivatives like
\(\partial J / \partial x_i\) or \(\partial J / \partial
\hat{y}_j\) are fair game and tell us how \(J\) would react in
response to small changes in those quantities.

Chain rule

The chain rule allows us to calculate partial derivatives in terms of
other partial derivatives, simplifying the overall computation. We
will go over it in some detail as it forms the basis of the
backpropagation algorithm. For now let us assume that each of the
variables in the above example are scalars. We will start by looking
at the effect of \(r\) on \(J\) and move backward from there.
Basic calculus tells us that:

\[\begin{split}J = r^2 \\
{\partial J}/{\partial r} = 2r\end{split}\]

Thus, if \(r=5\) and we decrease \(r\) by a small
\(\epsilon\), the squared error \(J\) will go down by
\(10\epsilon\). Now let’s move back a step and look at
\(\hat{y}\):

\[\begin{split}r = \hat{y} - y \\
{\partial r}/{\partial \hat{y}} = 1\end{split}\]

So how much effect will a small \(\epsilon\) decrease in
\(\hat{y}\) have on \(J\) when \(r=5\)? Well, when
\(\hat{y}\) goes down by \(\epsilon\), so will \(r\),
which means \(J\) will go down by \(10\epsilon\) again. The
chain rule expresses this idea:

\[\frac{\partial J}{\partial\hat{y}} =
\frac{\partial J}{\partial r}
\frac{\partial r}{\partial\hat{y}}
= 2r\]

Going back further, we have:

\[\begin{split}\hat{y} = z + b \\
{\partial \hat{y}}/{\partial b} = 1 \\
{\partial \hat{y}}/{\partial z} = 1 \\\end{split}\]

Which means \(b\) and \(z\) have the same effect on \(J\)
as \(\hat{y}\) and \(r\), i.e. decreasing them by
\(\epsilon\) will decrease \(J\) by \(2r\epsilon\) as
well. Finally:

\[\begin{split}z = w x \\
{\partial z}/{\partial x} = w \\
{\partial z}/{\partial w} = x\end{split}\]

This allows us to compute the effect of \(w\) on \(J\) in
several steps: moving \(w\) by \(\epsilon\) will move
\(z\) by \(x\epsilon\), \(\hat{y}\) and \(r\) will
move exactly the same amount because their partials with \(z\) are
1, and finally since \(r\) moves by \(x\epsilon\), \(J\)
will move by \(2rx\epsilon\).

\[\frac{\partial J}{\partial w} =
\frac{\partial J}{\partial r}
\frac{\partial r}{\partial \hat{y}}
\frac{\partial \hat{y}}{\partial z}
\frac{\partial z}{\partial w}
= 2rx\]

We can represent this process of computing partial derivatives as
follows:

[image: _images/linregback.jpg]
Note that we have the same number of boxes and operations, but all the
arrows are reversed. Let us call this the backward pass, and the
original computation in the previous picture the forward pass. Each
box in this backward-pass picture represents the partial derivative
for the corresponding box in the previous forward-pass picture. Most
importantly, each computation is local: each operation takes the
partial derivative of its output, and multiplies it with a factor that
only depends on the original input/output values to compute the
partial derivative of its input(s). In fact we can implement the
forward and backward passes for the linear regression model using the
following local operations:

[image: _images/sqnorm.jpg]
[image: _images/sub.jpg]
[image: _images/add.jpg]
[image: _images/mul.jpg]

Multiple dimensions

Let’s look at the case where the input and output are not scalars but
vectors. In particular assume that \(x \in \mathbb{R}^D\) and
\(y \in \mathbb{R}^C\). This makes \(W \in
\mathbb{R}^{C\times D}\) a matrix and \(z,b,\hat{y},r\) vectors in
\(\mathbb{R}^C\). During the forward pass, \(z=Wx\) operation
is now a matrix-vector product, the additions and subtractions are
elementwise operations. The squared error \(J=\|r\|^2=\sum
r_i^2\) is still a scalar. For the backward pass we ask how much each
element of these vectors or matrices effect \(J\). Starting with
\(r\):

\[\begin{split}J = \sum r_i^2 \\
{\partial J}/{\partial r_i} = 2r_i\end{split}\]

We see that when \(r\) is a vector, the partial derivative of each
component is equal to twice that component. If we put these partial
derivatives together in a vector, we obtain a gradient vector:

\[\nabla_r J
\equiv \langle \frac{\partial J}{\partial r_1}, \cdots, \frac{\partial J}{\partial r_C} \rangle
= \langle 2 r_1, \ldots, 2 r_C \rangle
= 2\vec{r}\]

The addition, subtraction, and square norm operations work the same
way as before except they act on each element. Moving back through
the elementwise operations we see that:

\[\nabla_r J = \nabla_\hat{y} J = \nabla_b J = \nabla_z J = 2\vec{r}\]

For the operation \(z=Wx\), a little algebra will show you that:

\[\begin{split}\nabla_W J = \nabla_z J \cdot x^T \\
\nabla_x J = W^T \cdot \nabla_z J\end{split}\]

Note that the gradient of a variable has the same shape as the
variable itself. In particular \(\nabla_W J\) is a \(C\times
D\) matrix. Here is the graphical representation for matrix
multiplication:

[image: _images/dot.jpg]

Multiple instances

We will typically process data multiple instances at a time for
efficiency. Thus, the input \(x\) will be a \(D\times N\)
matrix, and the output \(y\) will be a \(C\times N\) matrix,
the \(N\) columns representing \(N\) different instances.
Please verify to yourself that the forward and backward operations as
described above handle this case without much change: the elementwise
operations act on the elements of the matrices just like vectors, and
the matrix multiplication and its gradient remains the same. Here is
a picture of the forward and backward passes:

[image: _images/batchforwback.jpg]
The only complication is at the addition of the bias vector. In the
batch setting, we are adding \(b\in\mathbb{R}^{C\times 1}\) to
\(z\in\mathbb{R}^{C\times N}\). This will be a broadcasting
operation, i.e. the vector \(b\) will be added to each column of
the matrix \(z\) to get \(\hat{y}\). In the backward pass,
we’ll need to add the columns of \(\nabla_\hat{y} J\) to get the
gradient \(\nabla_b J\).

Stochastic Gradient Descent

The gradients calculated by backprop, \(\nabla_w J\) and
\(\nabla_b J\), tell us how much small changes in corresponding
entries in \(w\) and \(b\) will effect the error (for the last
instance, or minibatch). Small steps in the gradient direction will
increase the error, steps in the opposite direction will decrease the
error.

In fact, we can show that the gradient is the direction of steepest
ascent. Consider a unit vector \(v\) pointing in some arbitrary
direction. The rate of change in this direction is given by the
projection of \(v\) onto the gradient, i.e. their dot product
\(\nabla J \cdot v\). What direction maximizes this dot product?
Recall that:

\[\nabla J \cdot v = | \nabla J |\,\, | v | \cos(\theta)\]

where \(\theta\) is the angle between \(v\) and the gradient
vector. \(\cos(\theta)\) is maximized when the two vectors point
in the same direction. So if you are going to move a fixed (small)
size step, the gradient direction gives you the biggest bang for the
buck.

This suggests the following update rule:

\[w \leftarrow w - \nabla_w J\]

This is the basic idea behind Stochastic Gradient Descent (SGD): Go
over the training set instance by instance (or minibatch by
minibatch). Run the backpropagation algorithm to calculate the error
gradients. Update the weights and biases in the opposite direction of
these gradients. Rinse and repeat...

Over the years, people have noted many subtle problems with this
approach and suggested improvements:

Step size: If the step sizes are too small, the SGD algorithm will
take too long to converge. If they are too big it will overshoot the
optimum and start to oscillate. So we scale the gradients with an
adjustable parameter called the learning rate \(\eta\):

\[w \leftarrow w - \eta \nabla_w J\]

Step direction: More importantly, it turns out the gradient (or
its opposite) is often NOT the direction you want to go in order to
minimize error. Let us illustrate with a simple picture:

[image: _images/longnarrowvalley.png]
The figure on the left shows what would happen if you stood on one
side of the long narrow valley and took the direction of steepest
descent: this would point to the other side of the valley and you
would end up moving back and forth between the two sides, instead of
taking the gentle incline down as in the figure on the right. The
direction across the valley has a high gradient but also a high
curvature (second derivative) which means the descent will be sharp
but short lived. On the other hand the direction following the bottom
of the valley has a smaller gradient and low curvature, the descent
will be slow but it will continue for a longer distance. Newton’s
method [https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization] adjusts the direction taking into account the second
derivative:

[image: _images/330px-Newton_optimization_vs_grad_descent.svg.png]
In this figure, the two axes are w1 and w2, two parameters of our
network, and the contour plot represents the error with a minimum at
x. If we start at x0, the Newton direction (in red) points almost
towards the minimum, whereas the gradient (in green), perpendicular to
the contours, points to the right.

Unfortunately Newton’s direction is expensive to compute. However, it
is also probably unnecessary for several reasons: (1) Newton gives us
the ideal direction for second degree objective functions, which our
objective function almost certainly is not, (2) The error function
whose gradient backprop calculated is the error for the last
minibatch/instance only, which at best is a very noisy approximation
of the real error function, thus we shouldn’t spend too much effort
trying to get the direction exactly right.

So people have come up with various approximate methods to improve the
step direction. Instead of multiplying each component of the gradient
with the same learning rate, these methods scale them separately using
their running average (momentum, Nesterov), or RMS (Adagrad, Rmsprop).
Some even cap the gradients at an arbitrary upper limit (gradient
clipping) to prevent unstabilities.

You may wonder whether these methods still give us directions that
consistently increase/decrease the objective function. If we do not
insist on the maximum increase, any direction whose components have
the same signs as the gradient vector is guaranteed to increase the
function (for short enough steps). The reason is again given by the
dot product \(\nabla J \cdot v\). As long as these two vectors
carry the same signs in the same components, the dot product, i.e. the
rate of change along \(v\), is guaranteed to be positive.

Minimize what? The final problem with gradient descent, other than
not telling us the ideal step size or direction, is that it is not
even minimizing the right objective! We want small error on never
before seen test data, not just on the training data. The truth is, a
sufficiently large model with a good optimization algorithm can get
arbitrarily low error on any finite training data (e.g. by just
memorizing the answers). And it can typically do so in many different
ways (typically many different local minima for training error in
weight space exist). Some of those ways will generalize well to unseen
data, some won’t. And unseen data is (by definition) not seen, so how
will we ever know which weight settings will do well on it?

There are at least three ways people deal with this problem: (1) Bayes
tells us that we should use all possible models and weigh their
answers by how well they do on training data (see Radford Neal’s fbm),
(2) New methods like dropout that add distortions and noise to inputs,
activations, or weights during training seem to help generalization,
(3) Pressuring the optimization to stay in one corner of the weight
space (e.g. L1, L2, maxnorm regularization) helps generalization.

References

	http://ufldl.stanford.edu/tutorial/supervised/LinearRegression

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knet.jl 0.7.2 documentation

Softmax Classification

Note

Concepts: classification, likelihood, softmax, one-hot vectors,
zero-one loss, conditional likelihood, MLE, NLL, cross-entropy loss

We will introduce classification problems and some simple models for
classification.

Classification

Classification problems are supervised machine learning problems where
the task is to predict a discrete class for a given input (unlike
regression where the output was numeric). A typical example is
handwritten digit recognition where the input is an image of a
handwritten digit, and the output is one of the discrete categories
\(\{0, \ldots, 9\}\). As in all supervised learning problems the
training data consists of a set of example input-output pairs.

Likelihood

A natural objective in classification could be to minimize the number
of misclassified examples in the training data. This number is known
as the zero-one loss. However the zero-one loss has some
undesirable properties for training: in particular it is
discontinuous. A small change in one of the parameters either has no
effect on the loss, or can turn one or more of the predictions from
false to true or true to false, causing a discontinuous jump in the
objective. This means the gradient of the zero-one loss with respect
to the parameters is either undefined or not helpful.

A more commonly used objective for classification is conditional
likelihood: the probability of the observed data given our model and
the inputs. Instead of predicting a single class for each instance,
we let our model predict a probability distribution over all classes.
Then we adjust the weights of the model to increase the probabilities
for the correct classes and decrease it for others. This is also
known as the maximum likelihood estimation (MLE).

Let \(\mathcal{X}=\{x_1,\ldots,x_N\}\) be the inputs in the
training data, \(\mathcal{Y}=\{y_1,\ldots,y_N\}\) be the correct
classes and \(\theta\) be the parameters of our model.
Conditional likelihood is:

\[L(\theta) = P(\mathcal{Y}|\mathcal{X},\theta)
= \prod_{n=1}^N P(y_n|x_n,\theta)\]

The second equation assumes that the data instances were generated
independently. We usually work with log likelihood for mathematical
convenience: log is a monotonically increasing function, so maximizing
likelihood is the same as maximizing log likelihood:

\[\ell(\theta) = \log P(\mathcal{Y}|\mathcal{X},\theta)
= \sum_{n=1}^N \log P(y_n|x_n,\theta)\]

We will typically use the negative of \(\ell\) (machine learning
people like to minimize), which is known as negative log
likelihood (NLL), or cross-entropy loss (softloss in Knet).

Softmax

The linear regression model we have seen earlier produces unbounded
\(y\) values. To go from arbitrary values
\(y\in\mathbb{R}^C\) to normalized probability estimates
\(p\in\mathbb{R}^C\) for a single instance, we use exponentiation
and normalization:

\[p_i = \frac{\exp y_i}{\sum_{c=1}^C \exp y_c}\]

where \(i,c\in\{1,\ldots,C\}\) range over classes, and \(p_i,
y_i, y_c\) refer to class probabilities and values for a single instance.
This is called the softmax function (soft operation in Knet).
A model that converts the unnormalized values at the end of a linear
regression to normalized probabilities for classification is called
the softmax classifier.

We need to figure out the backward pass for the softmax function. In
other words if someone gives us the gradient of some objective
\(J\) with respect to the class probabilities \(p\) for a
single training instance, what is the gradient with respect to the
input of the softmax \(y\)? First we’ll find the partial
derivative of one component of \(p\) with respect to one component
of \(y\):

\[\begin{split}\frac{\partial p_i}{\partial y_j}
&=& \frac{[i=j] \exp y_i \sum_c \exp y_c - \exp y_i \exp y_j}
 {(\sum_c \exp y_c)^2} \\
&=& \,[i=j]\, p_i - p_i p_j\end{split}\]

The square brackets are the Iverson bracket [https://en.wikipedia.org/wiki/Iverson_bracket] notation,
i.e. \([A]\) is 1 if \(A\) is true, and 0 if \(A\) is
false.

Note that a single entry in \(y\) effects \(J\) through
multiple paths (\(y_j\) contributes to the denominator of every
\(p_i\)), and these effects need to be added for \(\partial
J/\partial y_j\):

\[\frac{\partial J}{\partial y_j}
= \sum_{i=1}^C \frac{\partial J}{\partial p_i}
\frac{\partial p_i}{\partial y_j}\]

One-hot vectors

When using a probabilistic classifier, it is convenient to represent
the desired output as a one-hot vector, i.e. a vector in which all
entries are ‘0’ except a single ‘1’. If the correct class is
\(c\in\{1,\ldots,C\}\), we represent this with a one-hot vector
\(p\in\mathbb{R}^C\) where \(p_c = 1\) and \(p_{i\neq c}
= 0\). Note that \(p\) can be viewed as a probability vector where
all the probability mass is concentrated at c. This representation
also allows us to have probabilistic targets where there is not a
single answer but target probabilities associated with each answer.
Given a one-hot (or probabilistic) \(p\), and the model prediction
\(\hat{p}\), we can write the log-likelihood for a single instance
as:

\[\ell = \sum_{c=1}^C p_c \log \hat{p}_c\]

Gradient of log likelihood

To compute the gradient for log likelihood, we need to make the
normalization of \(\hat{p}\) explicit:

\[\begin{split}\ell &=& \sum_c p_c \log \frac{\hat{p}_c}{\sum_k\hat{p}_k} \\
&=& \sum_c p_c \log{\hat{p}_c} - \sum_c p_c \log \sum_k\hat{p}_k \\
&=& (\sum_c p_c \log{\hat{p}_c}) - (\log \sum_k\hat{p}_k) \\
\frac{\partial \ell}{\partial \hat{p}_i} &=&
\frac{p_i}{\hat{p}_i} - \frac{1}{\sum_k\hat{p}_k}
= \frac{p_i}{\hat{p}_i} - 1\end{split}\]

The gradient with respect to unnormalized y takes a particularly
simple form:

\[\begin{split}\frac{\partial\ell}{\partial y_j}
&=& \sum_i \frac{\partial\ell}{\partial \hat{p}_i}
\frac{\partial \hat{p}_i}{\partial y_j} \\
&=& \sum_i (\frac{p_i}{\hat{p}_i} - 1)(\,[i=j]\, \hat{p}_i - \hat{p}_i \hat{p}_j) \\
&=& \, p_j - \hat{p}_j \\
\nabla\ell &=& \, p - \hat{p}\end{split}\]

The gradient with respect to \(\hat{p}\) causes numerical overflow
when some components of \(\hat{p}\) get very small. In practice
we usually skip that and directly compute the gradient with respect to
\(y\) which is numerically stable.

MNIST example

Let’s try our softmax classifier on the MNIST [http://yann.lecun.com/exdb/mnist] handwritten digit
classification dataset. Here are the first 8 images from MNIST, the goal is
to look at the pixels and classify each image as one of the digits
0-9:

[image: _images/firsteightimages.jpg]
See 5. Training with minibatches for more information about the
MNIST task, loading and minibatching data, and simple train and test
scripts.

Here is a softmax classifier in Knet:

@knet function mnist_softmax(x)
 w = par(init=Gaussian(0,0.001), dims=(10,28*28))
 b = par(init=Constant(0), dims=(10,1))
 y = w * x + b
 return soft(y)
end

We will compile our model and set an appropriate learning rate:

julia> model = compile(:mnist_softmax);
julia> setp(model; lr=0.15);

Let us train our model for 100 epochs and print out the negative log
likelihood (softloss) and classification error (zeroone) on
the training and testing sets after every epoch:

for epoch=1:nepochs
 train(model, dtrn, softloss)
 @printf("epoch:%d softloss:%g/%g zeroone:%g/%g\n", epoch,
 test(model, dtrn, softloss),
 test(model, dtst, softloss),
 test(model, dtrn, zeroone),
 test(model, dtst, zeroone))
end

epoch:1 softloss:0.359311/0.342333 zeroone:0.103033/0.094
epoch:2 softloss:0.32429/0.311829 zeroone:0.0924667/0.088
...
epoch:99 softloss:0.238815/0.270058 zeroone:0.0668667/0.0763
epoch:100 softloss:0.238695/0.270091 zeroone:0.0668333/0.0762

Here is a plot of the losses vs training epochs:

[image: _images/mnist_softmax.png]
We can observe a few things. First the training losses are better
than the test losses. This means there is some overfitting.
Second, it does not look like the training loss is going down to zero.
This means the softmax model is not flexible enough to fit the
training data exactly.

Representational power

So far we have seen how to create a machine learning model as a
differentiable program (linear regression, softmax classification)
whose parameters can be adjusted to hopefully imitate whatever process
generated our training data. A natural question to ask is whether a
particular model can behave like any system we want (given the right
parameters) or whether there is a limit to what it can represent.

It turns out the softmax classifier is quite limited in its
representational power: it can only represent linear classification
boundaries. To show this, remember the form of the softmax classifier
which gives the probability of the i’th class as:

\[\begin{split}p_i &=& \frac{\exp y_i}{\sum_{c=1}^C \exp y_c} \\\end{split}\]

where \(y_i\) is a linear function of the input \(x\). Note
that \(p_i\) is a monotonically increasing function of
\(y_i\), so for two classes \(i\) and \(j\), \(p_i >
p_j\) if \(y_i > y_j\). The boundary between two classes \(i\)
and \(j\) is the set of inputs for which the probability of the
two classes are equal:

\[\begin{split}p_i &=& p_j \\
y_i &=& y_j \\
w_i x + b_i &=& w_j x + b_j \\
(w_i - w_j) x + (b_i - b_j) &=& 0\end{split}\]

where \(w_i, b_i\) refer to the i’th row of \(w\) and
\(b\). This is a linear equation, i.e. the border between two
classes will always be linear in the input space with the softmax
classifier:

[image: _images/linear-boundary.png]
In the MNIST example, the relation between the pixels and the digit
classes is unlikely to be this simple. That is why we are stuck at
6-7% training error. To get better results we need more powerful
models.

References

	http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knet.jl 0.7.2 documentation

Multilayer Perceptrons

In this section we create multilayer perceptrons by stacking multiple
linear layers with non-linear activation functions in between.

Stacking linear classifiers is useless

We could try stacking multiple linear classifiers together. Here is a
two layer model:

@knet function mnist_softmax_2(x)
 w1 = par(init=Gaussian(0,0.001), dims=(100,28*28))
 b1 = par(init=Constant(0), dims=(100,1))
 y1 = w1 * x + b1
 w2 = par(init=Gaussian(0,0.001), dims=(10,100))
 b2 = par(init=Constant(0), dims=(10,1))
 return soft(w2 * y1 + b2)
end

Note that instead of outputting the softmax of y1, we used it as
input to another softmax classifier. Intermediate arrays like y1
are known as hidden layers because their contents are not directly
visible outside the model.

If you experiment with this model (I suggest using a smaller learning
rate, e.g. 0.01), you will see that it performs similarly to the
original softmax model. The reason is simple to see if we write the
function computed in mathematical notation and do some algebra:

\[\begin{split}\hat{p} &=& \mbox{soft}(W_2 (W_1 x + b_1) + b_2) \\
&=& \mbox{soft}((W_2 W_1)\, x + W_2 b_1 + b_2) \\
&=& \mbox{soft}(W x + b)\end{split}\]

where \(W=W_2 W_1\) and \(b=W_2 b_1 + b_2\). In other words,
we still have a linear classifier! No matter how many linear
functions you put on top of each other, what you get at the end is
still a linear function. So this model has exactly the same
representation power as the softmax model. Unless, we add a simple
instruction...

Introducing nonlinearities

Here is a slightly modified version of the two layer model:

@knet function mnist_mlp(x)
 w1 = par(init=Gaussian(0,0.001), dims=(100,28*28))
 b1 = par(init=Constant(0), dims=(100,1))
 y1 = relu(w1 * x + b1)
 w2 = par(init=Gaussian(0,0.001), dims=(10,100))
 b2 = par(init=Constant(0), dims=(10,1))
 return soft(w2 * y1 + b2)
end

MLP in mnist_mlp stands for multilayer perceptron which is one
name for this type of model. The only difference with the previous
example is the relu function we introduced in line 4. This is
known as the rectified linear unit (or rectifier), and is a simple
function defined by relu(x)=max(x,0) applied elementwise to the
input array. So mathematically what we are computing is:

\[\begin{split}\hat{p} &=& \mbox{soft}(W_2\, \mbox{relu}(W_1 x + b_1) + b_2)\end{split}\]

This cannot be reduced to a linear function, which may not seem like a
big difference but what a difference it makes to the model! Here are
the learning curves for mnist_mlp:

[image: _images/mnist_mlp.png]
Here are the learning curves for the linear model mnist_softmax
plotted at the same scale for comparison:

[image: _images/mnist_softmax2.png]
We can observe a few things: using MLP instead of a linear model
brings the training error from 6.7% to 0 and the test error from 7.5%
to 2.0%. There is still overfitting: the test error is not as good as
the training error, but the model has no problem classifying the training
data (all 60,000 examples) perfectly!

Types of nonlinearities (activation functions)

The functions we throw between linear layers to break the linearity
are called nonlinearities or activation functions. Here are
some activation functions that have been used as nonlinearities:

[image: _images/actf.png]
The step functions were the earliest activation functions used in the
perceptrons of 1950s. Unfortunately they do not give a useful
derivative that can be used for training a multilayer model. Sigmoid
and tanh (sigm and tanh in Knet) became popular in 1980s as
smooth approximations to the step functions and allowed the
application of the backpropagation algorithm. Modern activation
functions like relu and maxout are piecewise linear. They are
computationally inexpensive (no exponentials), and perform well in
practice. We are going to use relu in most of our models. Here is
the backward passes for sigmoid, tanh, and relu:

	function
	forward
	backward

	sigmoid
	\(y = \frac{1}{1+e^{-x}}\)
	\(\nabla_x J = y\,(1-y) \nabla_y J\)

	tanh
	\(y = \frac{e^x-e^{-x}}{e^x+e^{-x}}\)
	\(\nabla_x J = (1+y)(1-y) \nabla_y J\)

	relu
	\(y = \max(0,x)\)
	\(\nabla_x J = [y \geq 0] \nabla_y J\)

See (Karpathy, 2016, Ch 1) [http://cs231n.github.io/neural-networks-1] for more on activation functions and MLP
architecture.

Representational power

You might be wondering whether relu had any special properties or
would any of the other nonlinearities be sufficient. Another question
is whether there are functions multilayer perceptrons cannot represent
and if so whether adding more layers or different types of functions
would increase their representational power. The short answer is that
a two layer model can approximate any function if the hidden layer is
large enough, and can do so with any of the nonlinearities introduced
in the last section. Multilayer perceptrons are universal function
approximators!

We said that a two-layer MLP is a universal function approximator
given enough hidden units. This brings up the questions of
efficiency: how many hidden units / parameters does one need to
approximate a given function and whether the number of units depends
on the number of hidden layers. The efficiency is important both
computationally and statistically: models with fewer parameters can be
evaluated faster, and can learn from fewer examples (ref?). It turns
out there are functions whose representations are exponentially more
expensive in a shallow network compared to a deeper network (see
(Nielsen, 2016, Ch 5) [http://neuralnetworksanddeeplearning.com/chap5.html] for a discussion). Recent winners of image
recognition contests use networks with dozens of convolutional layers.
The advantage of deeper MLPs is empirically less clear, but you should
experiment with the number of units and layers using a development set
when starting a new problem.

Please see (Nielsen, 2016, Ch 4) [http://neuralnetworksanddeeplearning.com/chap4.html] for an intuitive explanation of
the universality result and (Bengio et al. 2016, Ch 6.4) [http://www.deeplearningbook.org/contents/mlp.html] for a more
in depth discussion and references.

Matrix vs Neuron Pictures

So far we have introduced multilayer perceptrons (aka artificial
neural networks) using matrix operations. You may be wondering why
people call them neural networks and be confused by terms like layers
and units. In this section we will give the correspondence between
the matrix view and the neuron view. Here is a schematic of a
biological neuron (figures from (Karpathy, 2016, Ch 1) [http://cs231n.github.io/neural-networks-1]):

[image: _images/neuron.png]
A biological neuron is a complex organism supporting thousands of
chemical reactions simultaneously under the regulation of thousands of
genes, communicating with other neurons through electrical and
chemical pathways involving dozens of different types of
neurotransmitter molecules. We assume (do not know for sure) that the
main mechanism of communication between neurons is electrical spike
trains that travel from the axon of the source neuron, through
connections called synapses, into dendrites of target neurons. We
simplify this picture further representing the strength of the spikes
and the connections with simple numbers to arrive at this cartoon
model:

[image: _images/neuron_model.jpeg]

This model is called an artificial neuron, a perceptron, or simply a
unit in neural network literature. We know it as the softmax
classifier.

When a number of these units are connected in layers, we get a
multilayer perceptron. When counting layers, we ignore the input
layer. So the softmax classifier can be considered a one layer neural
network. Here is a neural network picture and the corresponding
matrix picture for a two layer model:

[image: _images/neural_net.jpeg]
[image: _images/mlp2.jpg]
Here is a neural network picture and the corresponding matrix picture
for a three layer model:

[image: _images/neural_net2.jpeg]
[image: _images/mlp3.jpg]
We can use the following elementwise notation for the neural network
picture (e.g. similar to the one used in UFLDL [http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks]):

\[x_i^{(l)} = f(b_i^{(l)} + \sum_j w_{ij}^{(l)} x_j^{(l-1)})\]

Here \(x_i^{(l)}\) refers to the activation of the \(i\) th
unit in \(l\) th layer. We are counting the input as the 0’th
layer. \(f\) is the activation function, \(b_i^{(l)}\) is the
bias term. \(w_{ij}^{(l)}\) is the weight connecting unit
\(j\) from layer \(l-1\) to unit \(i\) from layer
\(l\). The corresponding matrix notation is:

\[x^{(l)} = f(W^{(l)} x^{(l-1)} + b^{(l)})\]

Programming Example

In this section we introduce several Knet features that make it easier
to define complex models. As our working example, we will go through
several attempts to define a 3-layer MLP. Here is our first attempt:

@knet function mlp3a(x0)
 w1 = par(init=Gaussian(0,0.001), dims=(100,28*28))
 b1 = par(init=Constant(0), dims=(100,1))
 x1 = relu(w1 * x0 + b1)
 w2 = par(init=Gaussian(0,0.001), dims=(100,100))
 b2 = par(init=Constant(0), dims=(100,1))
 x2 = relu(w2 * x1 + b2)
 w3 = par(init=Gaussian(0,0.001), dims=(10,100))
 b3 = par(init=Constant(0), dims=(10,1))
 return soft(w3 * x2 + b3)
end

We can identify several bad software engineering practices in this
definition:

	It contains a lot of repetition.

	It has a number of hardcoded parameters.

The key to controlling complexity in computer languages is
abstraction. Abstraction is the ability to name compound
structures built from primitive parts, so they too can be used as
primitives. In Knet we do this by using @knet functions not as
models, but as new operators inside other @knet functions.

Defining new operators

We could make the definition of mlp3 more compact by defining
@knet functions for its layers:

@knet function mlp3b(x0)
 x1 = relu_layer1(x0)
 x2 = relu_layer2(x1)
 return soft_layer3(x2)
end

@knet function relu_layer1(x)
 w = par(init=Gaussian(0,0.001), dims=(100,28*28))
 b = par(init=Constant(0), dims=(100,1))
 return relu(w * x + b)
end

@knet function relu_layer2(x)
 w = par(init=Gaussian(0,0.001), dims=(100,100))
 b = par(init=Constant(0), dims=(100,1))
 return relu(w * x + b)
end

@knet function soft_layer3(x)
 w = par(init=Gaussian(0,0.001), dims=(10,100))
 b = par(init=Constant(0), dims=(10,1))
 return soft(w * x + b)
end

This may make the definition of mlp3b a bit more readable. But it
does not reduce the overall length of the program. The helper @knet
functions like relu_layer1 contain hardcoded parameters like
dims and are not reusable.

Using keyword arguments

We can make @knet functions more reusable by using keyword arguments
that make them configurable. Here is a more compact definition of
mlp3 using a single helper @knet function, wbf (mnemonic for
\(f(w*x+b)\)):

@knet function mlp3c(x0)
 x1 = wbf(x0; f=:relu, inputs=28*28, outputs=100)
 x2 = wbf(x1; f=:relu, inputs=100, outputs=100)
 return wbf(x2; f=:soft, inputs=100, outputs=10)
end

@knet function wbf(x; f=:relu, inputs=0, outputs=0, winit=Gaussian(0,0.001), binit=Constant(0))
 w = par(init=winit, dims=(outputs,inputs))
 b = par(init=binit, dims=(outputs,1))
 return f(w * x + b)
end

Size inference

Knet can infer the size of an array based on the operations and other
arrays it interacts with. In particular, when forw(f,x) is called
Knet uses the size of the input x to figure out what size
intermediate arrays to allocate when computing f. This allows us
to define generic models and operators that work on inputs of any
size. We still need to specify the number of outputs, but the number
of inputs can be left unspecified. By convention 0 represents
“unspecified” when declaring dimensions. Here is a more generic
version of mlp3 that will work on images of any size:

@knet function mlp3d(x0)
 x1 = wbf(x0; f=:relu, out=100)
 x2 = wbf(x1; f=:relu, out=100)
 return wbf(x2; f=:soft, out=10)
end

@knet function wbf(x; f=:relu, out=0, winit=Gaussian(0,0.001), binit=Constant(0))
 w = par(init=winit, dims=(out,0))
 b = par(init=binit, dims=(out,1))
 return f(w * x + b)
end

Higher-order operators

Higher-order operators are ones that take other operators as
arguments. We have already seen an example: wbf takes an operator
f as one of its keyword arguments. A useful higher-order operator
for multi-layer models is repeat, which repeats a given operator
specified by frepeat configured by other keyword arguments a given
number of times specified by nrepeat. Here is a definition of
mlp3 using repeat:

@knet function mlp3e(x; o...)
 h = repeat(x; frepeat=:wbf, nrepeat=2, f=:relu, out=100, o...)
 return wbf(h; f=:soft, out=10)
end

@knet function wbf(x; f=:relu, out=0, winit=Gaussian(0,0.001), binit=Constant(0))
 w = par(init=winit, dims=(out,0))
 b = par(init=binit, dims=(out,1))
 return f(w * x + b)
end

In this example repeat saved us a single line, but the difference
can be more significant in deeper models.

Built-in operators

In addition to primitive operators like relu, many compound
operators such as wbf are already defined in Knet to make it
easier to define complex models. Please see the tables of
primitive operators and compound
operators for a summary and kfun.jl [https://github.com/denizyuret/Knet.jl/blob/master/src/kfun.jl] for exact
definitions.

References

	http://neuralnetworksanddeeplearning.com/chap4.html

	http://www.deeplearningbook.org/contents/mlp.html

	http://cs231n.github.io/neural-networks-1

	http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetwork

	http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knet.jl 0.7.2 documentation

Convolutional Neural Networks

Motivation

Let’s say we are trying to build a model that will detect cats in
photographs. The average resolution of images in ILSVRC [http://www.image-net.org/challenges/LSVRC/2014] is
\(482\times 415\), with three channels (RGB) this makes the
typical input size \(482\times 415\times 3=600,090\). Each hidden
unit connected to the input in a multilayer perceptron would have 600K
parameters, a single hidden layer of size 1000 would have 600 million
parameters. Too many parameters cause two types of problems: (1)
today’s GPUs have limited amount of memory (4G-12G) and large networks
fill them up quickly. (2) models with a large number of parameters
are difficult to train without overfitting: we need a lot of data,
strong regularization, and/or a good initialization to learn with
large models.

One problem with the MLP is that it is fully connected: every hidden
unit is connected to every input pixel. The model does not assume any
spatial relationships between pixels, in fact we can permute all the
pixels in an image and the performance of the MLP would be the same!
We could instead have an architecture where each hidden unit is
connected to a small patch of the image, say \(40\times 40\).
Each such locally connected hidden unit would have \(40\times
40\times 3=4800\) parameters instead of 600K. For the price (in
memory) of one fully connected hidden unit, we could have 125 of these
locally connected mini-hidden-units with receptive fields spread
around the image.

The second problem with the MLP is that it does not take advantage of
the symmetry in the problem: a cat in the lower right corner of the
image is going to be similar to a cat in the lower left corner. This
means the local hidden units looking at these two patches can share
identical weights. We can take one \(40\times 40\) cat filter and
apply it to each \(40\times 40\) patch in the image taking up only
4800 parameters.

A convolutional neural network (aka CNN or ConvNet) combines these
two ideas and uses operations that are local and that share weights.
CNNs commonly use three types of operations: convolution, pooling, and
normalization which we describe next.

Convolution

Convolution in 1-D

Let \(w, x\) be two 1-D vectors with \(W, X\) elements
respectively. In our examples, we will assume x is the input
(consider it a 1-D image) and w is a filter (aka kernel) with
\(W<X\). The 1-D convolution operation \(y=w\ast x\) results
in a vector with \(Y=X-W+1\) elements defined as:

\[y_k \equiv \sum_{i+j=k+W} x_i w_j\]

or equivalently

\[y_k \equiv \sum_{i=k}^{k+W-1} x_i w_{k+W-i}\]

where \(i\in[1,X], j\in[1,W], k\in[1,Y]\). We get each entry in y
by multiplying pairs of matching entries in x and w and summing the
results. Matching entries in x and w are the ones whose indices add
up to a constant. This can be visualized as flipping w, sliding it
over x, and at each step writing their dot product into a single entry
in y. Here is an example in Knet you should be able to calculate by
hand:

@knet function convtest1(x)
 w = par(init=reshape([1.0,2.0,3.0], (3,1,1,1)))
 y = conv(w, x)
 return y
end
julia> f = compile(:convtest1);
julia> x = reshape([1.0:7.0...], (7,1,1,1))
7x1x1x1 Array{Float64,4}: [1,2,3,4,5,6,7]
julia> y = forw(f,x)
5x1x1x1 Array{Float64,4}: [10,16,22,28,34]

conv is the convolution operation in Knet (based on the CUDNN [https://developer.nvidia.com/cudnn]
implementation). For reasons that will become clear it works with 4-D
and 5-D arrays, so we reshape our 1-D input vectors by adding extra
singleton dimensions at the end. The convolution of w=[1,2,3] and
x=[1,2,3,4,5,6,7] gives y=[10,16,22,28,34]. For example, the third
element of y, 22, can be obtained by reversing w to [3,2,1] and taking
its dot product starting with the third element of x, [3,4,5].

Padding

In the last example, the input x had 7 dimensions, the output y had 5.
In image processing applications we typically want to keep x and y the
same size. For this purpose we can provide a padding keyword
argument to the conv operator. If padding=k, x will be assumed
padded with k zeros on the left and right before the convolution,
e.g. padding=1 means treat x as [0 1 2 3 4 5 6 7 0]. The default
padding is 0. For inputs in D-dimensions we can specify padding with
a D-tuple, e.g. padding=(1,2) for 2D, or a single number,
e.g. padding=1 which is shorthand for padding=(1,1). The
result will have \(Y=X+2P-W+1\) elements where \(P\) is the
padding size. Therefore to preserve the size of x when W=3 we should
use padding=1.

@knet function convtest2(x)
 w = par(init=reshape([1.0,2.0,3.0], (3,1,1,1)))
 y = conv(w, x; padding=(1,0))
 return y
end
julia> f = compile(:convtest2);
julia> y = forw(f,x)
7x1x1x1 Array{Float64,4}: [4,10,16,22,28,34,32]

For example, to calculate the first entry of y, take the dot product
of the inverted w, [3,2,1] with the first three elements of the padded
x, [0 1 2]. You can see that in order to preserve the input size,
\(Y=X\), given a filter size \(W\), the padding should be set
to \(P=(W-1)/2\). This will work if W is odd.

Stride

In the preceding examples we shift the inverted w by one position
after each dot product. In some cases you may want to skip two or
more positions. The amount of skip is set by the stride keyword
argument of the conv operation (the default stride is 1). In the
following example we set stride to W such that the consecutive filter
applications are non-overlapping:

@knet function convtest3(x)
 w = par(init=reshape([1.0,2.0,3.0], (3,1,1,1)))
 y = conv(w, x; padding=(1,0), stride=3)
 return y
end
julia> f = compile(:convtest3);
julia> y = forw(f,x)
3x1x1x1 Array{Float64,4}: [4,22,32]

Note that the output has the first, middle, and last values of the
previous example, i.e. every third value is kept and the rest are
skipped. In general if stride=S and padding=P, the size of the output
will be:

\[Y = 1 + \left\lfloor\frac{X+2P-W}{S}\right\rfloor\]

Mode

The convolution operation we have used so far flips the convolution
kernel before multiplying it with the input. To take our first 1-D convolution example with

\[\begin{split}y_1 &=& x_1 w_W + x_2 w_{W-1} + x_3 w_{W-2} + \ldots \\
y_2 &=& x_2 w_W + x_3 w_{W-1} + x_4 w_{W-2} + \ldots \\
\ldots\end{split}\]

We could also perform a similar operation without kernel flipping:

\[\begin{split}y_1 &=& x_1 w_1 + x_2 w_2 + x_3 w_3 + \ldots \\
y_2 &=& x_2 w_1 + x_3 w_2 + x_4 w_3 + \ldots \\
\ldots\end{split}\]

This variation is called cross-correlation. The two modes are
specified in Knet/CUDNN by specifying one of the following as the
value of the mode keyword:

	CUDNN_CONVOLUTION

	CUDNN_CROSS_CORRELATION

This option would be important if we were hand designing our filters.
However the mode does not matter for CNNs where the filters are learnt
from data, the CNN will simply learn an inverted version of the filter
if necessary.

More Dimensions

When the input x has multiple dimensions convolution is defined
similarly. In particular the filter w has the same number of
dimensions but typically smaller size. The convolution operation
flips w in each dimension and slides it over x, calculating the sum of
elementwise products at every step. The formulas we have given above
relating the output size to the input and filter sizes, padding and
stride parameters apply independently for each dimension.

Knet supports 2D and 3D convolutions. The inputs and the filters have
two extra dimensions at the end which means we use 4D and 5D arrays
for 2D and 3D convolutions. Here is a 2D convolution example:

@knet function convtest4(x)
 w = par(init=reshape([1.0:4.0...], (2,2,1,1)))
 y = conv(w, x)
 return y
end
julia> f = compile(:convtest4);
julia> x = reshape([1.0:9.0...], (3,3,1,1));
julia> y = forw(f,x);
julia> x
3x3x1x1 Array{Float64,4}:
[:, :, 1, 1] =
 1.0 4.0 7.0
 2.0 5.0 8.0
 3.0 6.0 9.0
julia> get(f,:w)
2x2x1x1 Array{Float64,4}:
[:, :, 1, 1] =
 1.0 3.0
 2.0 4.0
julia> y
2x2x1x1 CudaArray{Float64,4}:
[:, :, 1, 1] =
 23.0 53.0
 33.0 63.0

To see how this result comes about, note that when you flip w in both
dimensions you get:

4 2
3 1

Multiplying this elementwise with the upper left corner of x:

1 4
2 5

and adding the results gives you the first entry 23.

The padding and stride options work similarly in multiple dimensions
and can be specified as tuples: padding=(1,2) means a padding width of
1 along the first dimension and 2 along the second dimension for a 2D
convolution. You can use padding=1 as a shorthand for padding=(1,1).

Multiple filters

So far we have been ignoring the extra dimensions at the end of our
convolution arrays. Now we are ready to put them to use. A
D-dimensional input image is typically represented as a D+1
dimensional array with dimensions:

\[[X_1, \ldots, X_D, C]\]

The first D dimensions \(X_1\ldots X_D\) determine the spatial
extent of the image. The last dimension \(C\) is the number of
channels (aka slices, frames, maps, filters). The definition and
number of channels is application dependent. We use C=3 for RGB
images representing the intensity in three colors: red, green, and
blue. For grayscale images we have a single channel, C=1. If you
were developing a model for chess, we could have C=12, each channel
representing the locations of a different piece type.

In an actual CNN we do not typically hand-code the filters. Instead
we tell the network: “here are 1000 randomly initialized filters, you
go ahead and turn them into patterns useful for my task.” This means
we usually work with banks of multiple filters simultaneously and GPUs
have optimized operations for such filter banks. The dimensions of a
typical filter bank are:

\[[W_1, \ldots, W_D, I, O]\]

The first D dimensions \(W_1\ldots W_D\) determine the spatial
extent of the filters. The next dimension \(I\) is the number of
input channels, i.e. the number of filters from the previous layer, or
the number of color channels of the input image. The last dimension
\(O\) is the number of output channels, i.e. the number of filters
in this layer.

If we take an input of size \([X_1,\ldots, X_D,I]\) and apply a
filter bank of size \([W_1,\ldots,W_D,I,O]\) using padding
\([P_1,\ldots,P_D]\) and stride \([S_1,\ldots,S_D]\) the
resulting array will have dimensions:

\[\begin{split}[W_1, \ldots, W_D, I, O] \ast [X_1, \ldots, X_D, I]
\Rightarrow [Y_1, \ldots, Y_D, O] \\\end{split}\]\[\mbox{where } Y_i = 1 + \left\lfloor\frac{X_i+2P_i-W_i}{S_i}\right\rfloor\]

As an example let’s start with an input image of \(256\times 256\)
pixels and 3 RGB channels. We’ll first apply 25 filters of size
\(5\times 5\) and padding=2, then 50 filters of size
\(3\times 3\) and padding=1, and finally 75 filters of size
\(3\times 3\) and padding=1. Here are the dimensions we will get:

\[\begin{split}[256, 256, 3] \ast [5, 5, 3, 25] \Rightarrow [256, 256, 25] \\
[256, 256, 25] \ast [3, 3, 25,50] \Rightarrow [256, 256, 50] \\
[256, 256, 50] \ast [3, 3, 50,75] \Rightarrow [256, 256, 75]\end{split}\]

Note that the number of input channels of the input data and the
filter bank always match. In other words, a filter covers only a
small part of the spatial extent of the input but all of its channel
depth.

Multiple instances

In addition to processing multiple filters in parallel, we will want
to implement CNNs with minibatching, i.e. process multiple inputs in
parallel. A minibatch of D-dimensional images is represented as a D+2
dimensional array:

\[[X_1, \ldots, X_D, I, N]\]

where I is the number of channels as before, and N is the number of
images in a minibatch. The convolution implementation in Knet/CUDNN
use D+2 dimensional arrays for both images and filters. We used 1 for
the extra dimensions in our first examples, in effect using a single
channel and a single image minibatch.

If we apply a filter bank of size \([W_1, \ldots, W_D, I, O]\) to
the minibatch given above the output size would be:

\[\begin{split}[W_1, \ldots, W_D, I, O] \ast [X_1, \ldots, X_D, I, N]
\Rightarrow [Y_1, \ldots, Y_D, O, N] \\\end{split}\]\[\mbox{where } Y_i = 1 + \left\lfloor\frac{X_i+2P_i-W_i}{S_i}\right\rfloor\]

If we used a minibatch size of 128 in the previous example with
\(256\times 256\) images, the sizes would be:

\[\begin{split}[256, 256, 3, 128] \ast [5, 5, 3, 25] \Rightarrow [256, 256, 25, 128] \\
[256, 256, 25, 128] \ast [3, 3, 25,50] \Rightarrow [256, 256, 50, 128] \\
[256, 256, 50, 128] \ast [3, 3, 50,75] \Rightarrow [256, 256, 75, 128]\end{split}\]

basically adding an extra dimension of 128 at the end of each data
array.

By the way, the arrays in this particular example already exceed 5GB
of storage, so you would want to use a smaller minibatch size if you
had a K20 GPU with 4GB of RAM.

Note: All the dimensions given above are for column-major languages
like Knet. CUDNN uses row-major notation, so all the dimensions
would be reversed, e.g. \([N,I,X_D,\ldots,X_1]\).

Convolution vs matrix multiplication

Convolution can be turned into a matrix multiplication, where certain
entries in the matrix are constrained to be the same. The motivation
is to be able to use efficient algorithms for matrix multiplication
in order to perform convolution. The drawback is the large amount of
memory needed due to repeated entries or sparse representations.

Here is a matrix implementation for our first convolution example
\(w=[1\ldots 3],\,\,x=[1\ldots 7],\,\,w\ast x = [10,16,22,28,34]\):

[image: _images/im2col1a.jpg]
In this example we repeated the entries of the filter on multiple rows
of a sparse matrix with shifted positions. Alternatively we can
repeat the entries of the input to place each local patch on a
separate column of an input matrix:

[image: _images/im2col1b.jpg]
The first approach turns w into a \(Y\times X\) sparse matrix,
wheras the second turns x into a \(W\times Y\) dense matrix.

For 2-D images, typically the second approach is used: the local
patches of the image used by convolution are stretched out to columns
of an input matrix, an operation commonly called im2col. Each
convolutional filter is stretched out to rows of a filter matrix.
After the matrix multiplication the resulting array is reshaped into
the proper output dimensions. The following figure illustrates these
operations on a small example:

[image: _images/im2col2.jpg]
It is also possible to go in the other direction, i.e. implement
matrix multiplication (i.e. a fully connected layer) in terms of
convolution. This conversion is useful when we want to build a
network that can be applied to inputs of different sizes: the matrix
multiplication would fail, but the convolution will give us outputs of
matching sizes. Consider a fully connected layer with a weight matrix
W of size \(K\times D\) mapping a D-dimensional input vector x to
a K-dimensional output vector y. We can consider each of the K rows
of the W matrix a convolution filter. The following example shows how
we can reshape the arrays and use convolution for matrix
multiplication:

julia> using Knet, CUDNN
julia> x = reshape([1.0:3.0...], (3,1))
3x1 Array{Float64,2}:
 1.0
 2.0
 3.0
julia> w = reshape([1.0:6.0...], (2,3))
2x3 Array{Float64,2}:
 1.0 3.0 5.0
 2.0 4.0 6.0
julia> y = w * x
2x1 Array{Float64,2}:
 22.0
 28.0
julia> f = compile(:conv, mode=CUDNN_CROSS_CORRELATION);
julia> x2 = reshape(x, (3,1,1,1))
3x1x1x1 Array{Float64,4}:
[:, :, 1, 1] =
 1.0
 2.0
 3.0
julia> w2 = reshape(w', (3,1,1,2))
3x1x1x2 Array{Float64,4}:
[:, :, 1, 1] =
 1.0
 3.0
 5.0
[:, :, 1, 2] =
 2.0
 4.0
 6.0
julia> y2 = forw(f, w2, x2)
1x1x2x1 CudaArray{Float64,4}:
[:, :, 1, 1] =
 22.0
[:, :, 2, 1] =
 28.0

In addition to computational concerns, these examples also show that a
fully connected layer can emulate a convolutional layer given the
right weights and vice versa, i.e. convolution does not get us any
extra representational power. However it does get us representational
and statistical efficiency, i.e. the functions we would like to
approximate are often expressed with significantly fewer parameters
using convolutional layers and thus require fewer examples to train.

Backpropagation

Convolution is a linear operation consisting of additions and
multiplications, so its backward pass is not very complicated except
for the indexing. Just like the backward pass for matrix
multiplication can be expressed as another matrix multiplication, the
backward pass for convolution (at least if we use stride=1) can be
expressed as another convolution. We will derive the backward pass
for a 1-D example using the cross-correlation mode (no kernel
flipping) to keep things simple. We will denote the cross-correlation
operation with \(\star\) to distinguish it from convolution
denoted with \(\ast\). Here are the individual entries of
\(y=w\star x\):

\[\begin{split}y_1 &=& x_1 w_1 + x_2 w_2 + x_3 w_3 + \ldots \\
y_2 &=& x_2 w_1 + x_3 w_2 + x_4 w_3 + \ldots \\
y_3 &=& x_3 w_1 + x_4 w_2 + x_5 w_3 + \ldots \\
\ldots\end{split}\]

As you can see, because of weight sharing the same w entry is used in
computing multiple y entries. This means a single w entry effects the
objective function through multiple paths and these effects need to be
added. Denoting \(\partial J/\partial y_i\) as \(y_i'\) for
brevity we have:

\[\begin{split}w_1' &=& x_1 y_1' + x_2 y_2' + \ldots \\
w_2' &=& x_2 y_1' + x_3 y_2' + \ldots \\
w_3' &=& x_3 y_1' + x_4 y_2' + \ldots \\
\ldots \\\end{split}\]

which can be recognized as another cross-correlation operation, this
time between \(x\) and \(y'\). This allows us to write
\(w'=y'\star x\).

Alternatively, we can use the equivalent matrix multiplication
operation from the last section to derive the backward pass:

[image: _images/xcor-im2col-forw.jpg]
If \(r\) is the matrix with repeated \(x\) entries in this
picture, we have \(y=wr\). Remember that the backward pass for
matrix multiplication \(y=wr\) is \(w'=y'r^T\):

[image: _images/xcor-im2col-back.jpg]
which can be recognized as the matrix multiplication equivalent of the
cross correlation operation \(w'=y'\star x\).

Here is the gradient for the input:

\[\begin{split}x_1' &=& w_1 y_1' \\
x_2' &=& w_2 y_1' + w_1 y_2' \\
x_3' &=& w_3 y_1' + w_2 y_2' + w_1 y_3' \\
\ldots \\\end{split}\]

You can recognize this as a regular convolution between \(w\) and
\(y'\) with some zero padding.

The following resources provide more detailed derivations of the
backward pass for convolution:

	Goodfellow, I. (2010) [http://www.iro.umontreal.ca/~lisa/pointeurs/convolution.pdf]. Technical report: Multidimensional, downsampled convolution for autoencoders. Technical report, Université de Montréal. 312.

	Bouvrie, J. (2006) [http://people.csail.mit.edu/jvb/papers/cnn_tutorial.pdf]. Notes on convolutional neural networks.

	UFLDL tutorial [http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork] and exercise [http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionalNeuralNetwork] on CNNs.

Pooling

It is common practice to use pooling (aka subsampling) layers in
between convolution operations in CNNs. Pooling looks at small
windows of the input, and computes a single summary statistic,
e.g. maximum or average, for each window. A pooling layer basically
says: tell me whether this feature exists in a certain region of the
image, I don’t care exactly where. This makes the output of the layer
invariant to small translations of the input. Pooling layers use
large strides, typically as large as the window size, which reduces
the size of their output.

Like convolution, pooling slides a small window of a given size over
the input optionally padded with zeros skipping stride pixels every
step. In Knet by default there is no padding, the window size is 2,
stride is equal to the window size and the pooling operation is max.
These default settings reduce each dimension of the input to half the
size.

Pooling in 1-D

Here is a 1-D example:

@knet function pooltest1(x)
 y = pool(x)
 return y
end
julia> f = compile(:pooltest1)
julia> x = reshape([1.0:6.0...], (6,1,1,1))
6x1x1x1 Array{Float64,4}: [1,2,3,4,5,6]
julia> forw(f,x)
3x1x1x1 CudaArray{Float64,4}: [2,4,6]

With window size and stride equal to 2, pooling considers the input
windows \([1,2], [3,4], [5,6]\) and picks the maximum in each
window.

Window

The default and most commonly used window size is 2, however other
window sizes can be specified using the window keyword. For
D-dimensional inputs the size can be specified using a D-tuple,
e.g. window=(2,3) for 2-D, or a single number, e.g. window=3
which is shorthand for window=(3,3) in 2-D. Here is an example
using a window size of 3 instead of the default 2:

@knet function pooltest2(x)
 y = pool(x; window=3)
 return y
end
julia> f = compile(:pooltest1)
julia> x = reshape([1.0:6.0...], (6,1,1,1))
6x1x1x1 Array{Float64,4}: [1,2,3,4,5,6]
julia> forw(f,x)
3x1x1x1 CudaArray{Float64,4}: [3,6]

With a window and stride of 3 (the stride is equal to window size by
default), pooling considers the input windows \([1,2,3],[4,5,6]\),
and writes the maximum of each window to the output. If the input
size is \(X\), and stride is equal to the window size \(W\),
the output will have \(Y=\lceil X/W\rceil\) elements.

Padding

The amount of zero padding is specified using the padding keyword
argument just like convolution. Padding is 0 by default. For
D-dimensional inputs padding can be specified as a tuple such as
padding=(1,2), or a single number padding=1 which is shorthand
for padding=(1,1) in 2-D. Here is a 1-D example:

@knet function pooltest3(x)
 y = pool(x; padding=(1,0))
 return y
end
julia> f = compile(:pooltest3)
julia> x = reshape([1.0:6.0...], (6,1,1,1))
6x1x1x1 Array{Float64,4}: [1,2,3,4,5,6]
julia> forw(f,x)
3x1x1x1 CudaArray{Float64,4}: [1,3,5,6]

In this example, window=stride=2 by default and the padding size is 1,
so the input is treated as \([0,1,2,3,4,5,6,0]\) and split into
windows of \([0,1],[2,3],[4,5],[6,0]\) and the maximum of each
window is written to the output.

With padding size \(P\), if the input size is \(X\), and
stride is equal to the window size \(W\), the output will have
\(Y=\lceil (X+2P)/W\rceil\) elements.

Stride

The pooling stride is equal to the window size by default (as opposed
to the convolution case, where it is 1 by default). This is most
common in practice but other strides can be specified using
tuples e.g. stride=(1,2) or numbers e.g. stride=1.

In general, when we have an input of size \(X\) and pool with
window size \(W\), padding \(P\), and stride \(S\), the
size of the output will be:

\[Y = 1 + \left\lceil\frac{X+2P-W}{S}\right\rceil\]

Pooling operations

There are three pooling operations defined by CUDNN used for
summarizing each window:

	CUDNN_POOLING_MAX

	CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING

	CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING

These options can be specified as the value of the mode keyword
argument to the pool operation. The default is
CUDNN_POOLING_MAX which we have been using so far. The last two
compute averages, and differ in whether to include or exclude the
padding zeros in these averages. For example, with input
\(x=[1,2,3,4,5,6]\), window=stride=2, and padding=1 we
have the following outputs with the three options:

mode=CUDNN_POOLING_MAX => [1,3,5,6]
mode=CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING => [0.5, 2.5, 4.5, 3.0]
mode=CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING => [1.0, 2.5, 4.5, 6.0]

More Dimensions

D-dimensional inputs are pooled with D-dimensional windows, the size
of each output dimension given by the 1-D formulas above. Here is a
2-D example with default options, i.e. window=stride=(2,2),
padding=(0,0), mode=max:

@knet function pooltest1(x)
 y = pool(x)
 return y
end
julia> f = compile(:pooltest1)
julia> x = reshape([1.0:16.0...], (4,4,1,1))
4x4x1x1 Array{Float64,4}:
[:, :, 1, 1] =
 1.0 5.0 9.0 13.0
 2.0 6.0 10.0 14.0
 3.0 7.0 11.0 15.0
 4.0 8.0 12.0 16.0
julia> forw(f,x)
2x2x1x1 CudaArray{Float64,4}:
[:, :, 1, 1] =
 6.0 14.0
 8.0 16.0

Multiple channels and instances

As we saw in convolution, each data array has two extra dimensions in
addition to the spatial dimensions: \([X_1, \ldots, X_D, I, N]\)
where \(I\) is the number of channels and \(N\) is the number
of instances in a minibatch.

When the number of channels is greater than 1, the pooling operation
is performed independently on each channel, e.g. for each patch, the
maximum/average in each channel is computed independently and copied
to the output. Here is an example with two channels:

@knet function pooltest1(x)
 y = pool(x)
 return y
end
julia> f = compile(:pooltest1)
julia> x = rand(4,4,2,1)
4x4x2x1 Array{Float64,4}:
[:, :, 1, 1] =
 0.0235776 0.470246 0.829754 0.164617
 0.375611 0.884792 0.561758 0.955467
 0.00740115 0.76617 0.674633 0.480402
 0.979588 0.949825 0.449385 0.956657
[:, :, 2, 1] =
 0.254501 0.0930295 0.640946 0.270479
 0.422195 0.0399775 0.387326 0.234855
 0.102558 0.589408 0.69867 0.498438
 0.823076 0.797679 0.695289 0.888321
julia> forw(f,x)
2x2x2x1 CudaArray{Float64,4}:
[:, :, 1, 1] =
 0.884792 0.955467
 0.979588 0.956657
[:, :, 2, 1] =
 0.422195 0.640946
 0.823076 0.888321

When the number of instances is greater than 1, i.e. we are using
minibatches, the pooling operation similarly runs in parallel on all
the instances:

julia> x = rand(4,4,1,2)
4x4x1x2 Array{Float64,4}:
[:, :, 1, 1] =
 0.664524 0.581233 0.949937 0.563411
 0.760211 0.714199 0.985956 0.478583
 0.190559 0.682141 0.43941 0.682127
 0.701371 0.0159724 0.28857 0.166187

[:, :, 1, 2] =
 0.637187 0.279795 0.0336316 0.233479
 0.979812 0.910836 0.410312 0.94062
 0.171724 0.388222 0.597548 0.817148
 0.41193 0.864101 0.178535 0.4956

julia> forw(f,x)
2x2x1x2 CudaArray{Float64,4}:
[:, :, 1, 1] =
 0.760211 0.985956
 0.701371 0.682127

[:, :, 1, 2] =
 0.979812 0.94062
 0.864101 0.817148

Normalization

Draft...

Karpathy says: “Many types of normalization layers have been proposed
for use in ConvNet architectures, sometimes with the intentions of
implementing inhibition schemes observed in the biological
brain. However, these layers have recently fallen out of favor because
in practice their contribution has been shown to be minimal, if any.”
(http://cs231n.github.io/convolutional-networks/#norm) Batch
normalization may be an exception, as it is used in modern
architectures.

Here are some references for normalization operations:

Implementations:

	Alex Krizhevsky’s cuda-convnet library API. (https://code.google.com/archive/p/cuda-convnet/wikis/LayerParams.wiki#Local_response_normalization_layer_(same_map))

	http://caffe.berkeleyvision.org/tutorial/layers.html

	http://lasagne.readthedocs.org/en/latest/modules/layers/normalization.html

Divisive normalisation (DivN):

	S. Lyu and E. Simoncelli. Nonlinear image representation
using divisive normalization. In CVPR, pages 1–8, 2008.

Local contrast normalization (LCN):

	N. Pinto, D. D. Cox, and J. J. DiCarlo. Why is real-world visual
object recognition hard? PLoS Computational Biology,
4(1), 2008.

	Jarrett, Kevin, et al. “What is the best multi-stage architecture
for object recognition?.” Computer Vision, 2009 IEEE 12th
International Conference
on. IEEE, 2009. (http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf)

Local response normalization (LRN):

	Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet
classification with deep convolutional neural networks.” Advances in
neural information processing systems. 2012.
(http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2012_0534.pdf)

Batch Normalization: This is more of an optimization topic.

	Ioffe, Sergey, and Christian Szegedy. “Batch normalization:
Accelerating deep network training by reducing internal covariate
shift.” arXiv preprint arXiv:1502.03167 (2015). (http://arxiv.org/abs/1502.03167/)

Architectures

We have seen a number of new operations: convolution, pooling, filters
etc. How to best put these together to form a CNN is still an active
area of research. In this section we summarize common patterns of
usage in recent work based on (Karpathy, 2016) [http://cs231n.github.io/convolutional-networks].

	The operations in convolutional networks are usually ordered into
several layers of convolution-bias-activation-pooling sequences
(cbfp is the mnemonic used in Knet). Note that the
convolution-bias-activation sequence is an efficient way to
implement the common neural net function \(f(wx+b)\) for a
locally connected and weight sharing hidden layer.

	The convolutional layers are typically followed by a number of fully
connected layers that end with a softmax layer for prediction (if we
are training for a classification problem).

	It is preferrable to have multiple convolution layers with small
filter sizes rather than a single layer with a large filter size.
Consider three convolutional layers with a filter size of
\(3\times 3\). The units in the top layer have receptive fields
of size \(7\times 7\). Compare this with a single layer with a
filter size of \(7\times 7\). The three layer architecture has
two advantages: The units in the single layer network is restricted
to linear decision boundaries, whereas the three layer network can
be more expressive. Second, if we assume C channels, the parameter
tensor for the single layer network has size \([7,7,C,C]\)
whereas the three layer network has three tensors of size
\([3,3,C,C]\) i.e. a smaller number of parameters. The one
disadvantage of the three layer network is the extra storage
required to store the intermediate results for backpropagation.

	Thus common settings for convolution use \(3\times 3\) filters
with stride = padding = 1 (which incidentally preserves the
input size). The one exception may be a larger filter size used in
the first layer which is applied to the image pixels. This will
save memory when the input is at its largest, and linear functions
may be sufficient to express the low level features at this stage.

	The pooling operation may not be present in every layer. Keep in
mind that pooling destroys information and having several
convolutional layers without pooling may allow more complex features
to be learnt. When pooling is present it is best to keep the window
size small to minimize information loss. The common settings for
pooling are window = stride = 2, padding = 0, which halves the
input size in each dimension.

Beyond these general guidelines, you should look at the architectures
used by successful models in the literature. Some examples are
LeNet (LeCun et al. 1998) [http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf],
AlexNet (Krizhevsky et al. 2012) [http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks],
ZFNet (Zeiler and Fergus, 2013) [http://arxiv.org/abs/1311.2901],
GoogLeNet (Szegedy et al. 2014) [http://arxiv.org/abs/1409.4842],
VGGNet (Simonyan and Zisserman, 2014) [http://arxiv.org/abs/1409.1556], and
ResNet (He et al. 2015) [http://arxiv.org/abs/1512.03385].

Exercises

	Design a filter that shifts a given image one pixel to right.

	Design an image filter that has 0 output in regions of uniform
color, but nonzero output at edges where the color changes.

	If your input consisted of two consecutive frames of video, how
would you detect motion using convolution?

	Can you implement matrix-vector multiplication in terms of convolution?
How about matrix-matrix multiplication? Do you need reshape operations?

	Can you implement convolution in terms of matrix multiplication?

	Can you implement elementwise broadcasting multiplication in terms
of convolution?

References

	Some of this chapter was based on the excellent lecture notes from: http://cs231n.github.io/convolutional-networks

	Christopher Olah’s blog has very good visual explanations (thanks to
Melike Softa for the reference): http://colah.github.io/posts/2014-07-Conv-Nets-Modular

	UFLDL [http://ufldl.stanford.edu]
(or its old version [http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial])
is an online tutorial with programming examples and explicit gradient derivations covering
convolution [http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution],
pooling [http://ufldl.stanford.edu/tutorial/supervised/Pooling],
and CNNs [http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork].

	Hinton’s video lecture and presentation at Coursera (Lec 5): https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec5.pdf

	For a derivation of gradients see: http://people.csail.mit.edu/jvb/papers/cnn_tutorial.pdf or http://www.iro.umontreal.ca/~lisa/pointeurs/convolution.pdf

	The CUDNN manual has more details about the convolution API: https://developer.nvidia.com/cudnn

	http://deeplearning.net/tutorial/lenet.html

	http://www.denizyuret.com/2014/04/on-emergence-of-visual-cortex-receptive.html

	http://neuralnetworksanddeeplearning.com/chap6.html

	http://www.deeplearningbook.org/contents/convnets.html

	http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp

	http://scs.ryerson.ca/~aharley/vis/conv/ has a nice visualization of an MNIST CNN. (Thanks to Fatih Ozhamaratli for the reference).

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knet.jl 0.7.2 documentation

Recurrent Neural Networks

References

	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec7.pdf (coursera hinton)

	http://karpathy.github.io/2015/05/21/rnn-effectiveness/

	http://colah.github.io/posts/2015-08-Understanding-LSTMs

	http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns

	https://en.wikipedia.org/wiki/Recurrent_neural_network

	https://www.willamette.edu/~gorr/classes/cs449/rnn1.html

	http://www.deeplearningbook.org/contents/rnn.html

	http://cs224d.stanford.edu/ (socher class on deep learning for nlp)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knet.jl 0.7.2 documentation

Reinforcement Learning

References

	http://karpathy.github.io/2016/05/31/rl/

	https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

	http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

	http://videolectures.net/rldm2015_silver_reinforcement_learning/?q=david%20silver

	http://cs229.stanford.edu/notes/cs229-notes12.pdf

	http://cs.stanford.edu/people/karpathy/reinforcejs/index.html

	https://www.udacity.com/course/machine-learning-reinforcement-learning–ud820

	http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

	http://people.csail.mit.edu/regina/my_papers/TG15.pdf

	In http://karpathy.github.io/2015/05/21/rnn-effectiveness: For more
about REINFORCE and more generally Reinforcement Learning and policy
gradient methods (which REINFORCE is a special case of) David
Silver’s class, or one of Pieter Abbeel’s classes. This is very
much ongoing work but these hard attention models have been
explored, for example, in Inferring Algorithmic Patterns with
Stack-Augmented Recurrent Nets, Reinforcement Learning Neural Turing
Machines, and Show Attend and Tell.

	In http://www.deeplearningbook.org/contents/ml.html: Please see
Sutton and Barto (1998) or Bertsekasand Tsitsiklis (1996) for
information about reinforcement learning, and Mnih et al.(2013) for
the deep learning approach to reinforcement learning.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knet.jl 0.7.2 documentation

Optimization

References

	http://www.deeplearningbook.org/contents/numerical.html (basic intro in 4.3)

	http://www.deeplearningbook.org/contents/optimization.html (8.1 generalization, 8.2 problems, 8.3 algorithms, 8.4 init, 8.5 adaptive lr, 8.6 approx 2nd order, 8.7 meta)

	http://andrew.gibiansky.com/blog/machine-learning/gauss-newton-matrix/ (great posts on optimization)

	https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf (excellent tutorial on cg, gd, eigens etc)

	http://arxiv.org/abs/1412.6544 (Goodfellow paper)

	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec6.pdf (hinton slides)

	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec8.pdf (hinton slides)

	http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

	http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_Martens10.pdf

	http://arxiv.org/abs/1503.05671

	http://arxiv.org/abs/1412.1193

	http://www.springer.com/us/book/9780387303031 (nocedal and wright)

	http://www.nrbook.com (numerical recipes)

	https://maths-people.anu.edu.au/~brent/pub/pub011.html (without derivatives)

	http://stanford.edu/~boyd/cvxbook/ (only convex optimization)

 Navigation

 	
 index

 	
 previous |

 	Knet.jl 0.7.2 documentation

Generalization

References

	http://www.deeplearningbook.org/contents/regularization.html

	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec9.pdf

	https://d396qusza40orc.cloudfront.net/neuralnets/lecture_slides/lec10.pdf

	http://blog.cambridgecoding.com/2016/03/24/misleading-modelling-overfitting-cross-validation-and-the-bias-variance-trade-off/

 Navigation

 	
 index

 	Knet.jl 0.7.2 documentation

Index

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_images/im2col1a.jpg

_static/plus.png

_images/neuron_model.jpeg
o wo

synapse

axon from a neuron

cell body

i (Z wiT; + b>
Zwizi b !

>
output axon

activation
function

_static/ajax-loader.gif

_static/file.png

_images/mlp2.jpg
input

: @ laye —

" | JJM
- ff '/aqef

W, @Bm

_images/xcor-im2col-back.jpg

_images/linregback.jpg

_static/down-pressed.png

_images/330px-Newton_optimization_vs_grad_descent.svg.png

_static/down.png

_images/mlp3.jpg
| fapuf |

- Jager

g
\ ,Az"(jlta{‘ |
| o ™

I

au/,au/

_images/longnarrowvalley.png

_images/actf.png
01 step <11+1 step relu: max(0)

1 1
05 05
0 0
05 05
Kl Kl
0 5 0 5 10 0 5 0 5 10 <1050 05 1
sigmoid: 1/(1+e™) tanh: (e *-e*)/(e* ™) maxout
1 1
I 05 05
0 0
05 05
Kl Kl

1005 0 5 10 1005 0 5 10 -1-050 051

_static/up-pressed.png

_images/aws02.png
® © ® /5 EC2 Management Console X Deniz

& C (3B https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#Imagesvisibility=.. Y| & o | & O &
AWS v Services v Deniz Yuret v N. California v Support v

EC2 Dashboard
o Ry ot~ o s e
Tags Publicimages v () | search : Knet [>] 1to20f2
Reports
Limits Name AMI Name - AMIID Source Owner

= INSTANGES (] Knet-0.7.2d ami-Bedcdfee 278106990601... 278106990601 Public
Instances Knet0.7.2a ami-149bee7d 278106990601L.. 278106990601 Public
‘Spot Requests
Reserved Instances Image: ami-8e3c4fee _J-]=]

Dedicated Hosts —
Detalls Permissions Tags

= IMAGES
| Amis AMIID ami-Be3odfee AMIName Knet-07.2d
Bundle Tasks Owner 278106990601 Source 278106990601/Knet-
o7.2d
=) ELASTIC BLOCK STORE Status available
Voliimas . NP

@ Feedback @ English Privacy Pollcy Terms of Use:

_images/aws07.png
® © ® /5 EC2 Management Console X Deniz

<« C () B https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#Instances:search.. ¥ ¢ o* <« & O &
AWS v Services v Deniz Yuret v N. California v Support v
o (D
Connect | Actions v
o
Events 4 Q@ o # 0
Tags Q| search : i-94177f21 (>} 1to1of1
Reports
Limits | Name - InstanceID - InstanceType - | Availability Zone - Instance State + Status Checks - /
=1 INSTANGES (] 194177121 92 2xlarge us-west-1b @ running Z initalzing
| Instances
‘Spot Requests
Reserved Instances Instance: | i-94177121 Public DNS: ec2-54-153-5-184.us-west-1.compute.amazonaws.com _§_N=]

Dedicated Hosts
Description || Status Checks = Monitoring | Tags

= MAGES
AMls Instance ID i-0417721 Public DNS ~ ec2-54-153-5-184.us-
Bundle Tasks west-
1.compute.amazonaws.com
(5 ELASTIC BLOGK STORE Instance state running PublicIP 54.153.5.184.
Vilimae

@ Feedback @ English Privacy Pollcy Terms of Use:

_images/neural_net.jpeg
output layer
input layer
hidden layer

_images/aws05.png
® /6 ccavaragemem Gorsdle. %\

s-west-1#LaunchinstanceW... | & o + 5 O &

< C)| B https://us-west-1.console.aws.amazon.com/ec2/v2/home?region:

Select an existing key pair or create a new key pair

Akey pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

Choose an existing key pair B
Select a key pair

clforna B

1) acknowledge that | have access to the selected private key file (california.pem), and that
without this file, | won't be able to log into my instance.

e (Y

_images/mnist_mlp.png
negative loglikelihood misclassification error

03 0.1
train train
test test
025 0.08
02
0.06
015
004
0.1
0.05 002
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

epochs epochs

_images/sqnorm.jpg

_images/firsteightimages.jpg

_images/add.jpg

_images/neuron.png
impulses carried
toward cell body
branches

dendrites

axon

nucleus terminals

impulses carried
away from cell body

_static/up.png

_images/mul.jpg

_images/im2col2.jpg
R T T RR =
RS ER 1R
*~ sco O
S oV RV

- W™ | 5 n (Ve o
i P <5

3 .
IR

R I A

_images/neural_net2.jpeg
Y

=dos
N

ORXK)
20
Hc 0y

output layer

input layer

hidden layer 1 hidden layer 2

_images/im2col1b.jpg

_images/dot.jpg
i
i
H
|
§
g
&
i
g
i
i
H

TS SAS DI

RN SRS

o O TR ST AT I S MR Y

i Sl saeas

_images/aws06.png
© 0 ® /5 ccomanagementconsae x (oeniz]

<« C () B nttps://us-west-1.console.aws.amazon.com/ec2/v2/home?regiol is-west-1#LaunchinstanceW... % | ¢ o <« & O &
AWS v Services v Deniz Yuret v N. California v Support v
Launch Status

@ Your instances are now launching
‘The following instance launches have been initiated: 1-94177t21 View launch log

© Get notified of estimated charges
Create billng alertsto get an email notification when estimated charges on your AWS bill exceed an amount you define (for example, if you
exceed the free usage tier).

How to connect to your instances

Your instances are launching, and it may take a few minutes until they are in the running state, when they will be ready for you to use. Usage hours on your
new instances will start immediatelv and continue to accrue until vou ston or terminate vour instances.

@ Feedback @ English Privacy Pollcy Terms of Use:

_images/linregforw.jpg
— ,_Wr1.2 —}- I .

1

_images/mnist_softmax2.png
negative loglikelihood misclassification error

03 0.1
025 : 0.08
02
0.06
015
004
0.1
0.05 002
train train
test test
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

epochs epochs

_images/batchforwback.jpg
w i t ' i i i i
| !] i ! i

e e é%ai(Ve 3 B il

¢

L J

i
e e i e

_images/aws04.png
[enz

® © ® | EC2 Management Console X

is-west-1#LaunchinstanceW... % | & o < 5 O &

<« C () B nttps://us-west-1.console.aws.amazon.com/ec2/v2/home?regiol

AWS v Services v Deniz Yuret v N. California v Support v
1.ChooseAMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Tag Instance 6. Configure Security Group 7. Review.

Step 7: Review Instance Launch

Please review your instance launch details. You can go back to edit changes for each section. Click Launch to assign a key pair to your instance and
complete the launch process.

A Improve your instances' security. Your security group, launch-wizard-21, is open to the world.
Your instances may be accessible from any IP address. We recommend that you update your security group rules to allow access from

known IP addresses only.
You can also open additional ports in your security group to facilitate access to the application or service you're running, e.

web servers. Edit security groups

HTTP (80) for

Edit AMI

coce | roves | ([

Torms of Use

~ AMI Details

Knot07 0d - ami.Radrdfan

@ Feedback @ English Privacy Polloy

_images/aws01.png
©® © ® /5 cc2 Management Console x

€« C i @ https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1 % & o
AWS v Services v Deniz Yuret v N. California v
| EC2 Dashboard Resources € Account Attributes
Events]
Tags ‘You are using the following Amazon EC2 resources in the US West (N. Califomia) Supported Platforms
region:
Reports 9 vPe
Limits 1 Running Instances 0 Elastic IPs Default VPG
. 0 Dedicated Hosts 6 Snapshots \po-5520430
Instances 2 Volumes 0 Load Balancers »
Spot Requests 1 Key Pairs 6 Security Groups IA?dltlonaI
Reserved Instances 0 Placement Groups Information
Degicated Hosts Getting Started Guide
=l IMAGES Create Instance Documentation
AMis To start using Amazon EC2 you will want to launch a virtual server, known asan Al EC2 Resources
Bundle Tasks Amazon EC2 instance. Forums.

@ Feedback (@ English Privacy Policy Terms of Use.

_images/linear-boundary.png

_images/aws03.png
© 0 ® /5 ccomanagementconsae x (oeniz]

<« C () B https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#LaunchinstanceW... & | ¢ o* +~ & O &

AWS v Services v Deniz Yuret v N. California v Support v
1.Choose AMI 2, Choose Instance Type 3. Configure Instance 4. Add Storage 5. Tag Instance 6. Configure Security Group 7. Review

Step 2: Choose an Instance Type

your applications. Learn more about instance types and how they can meet your computing needs.

Filterby: | GPU instances v Current generation v Show/Hide Columns

Currently selected: t2.micro (Variable ECUs, 1 VGPUs, 2.5 GHz, Intel Xeon Family, 1 GIB memory, EBS only)

= Memory Instance Storage Network

Family - mee - weeus (D - SO - @8 G - " Performance (i)
GPUnstances | g22xlarge 8 15 1x60(SSD) Yes High
GPUnstances g2.8xiarge 32 60 2x120(SSD) -

Cancel | Previous [GEZEFELEIENSTN | Next: Configure Instance Details

@ Feedback @ English Privacy Pollcy Terms of Use:

_images/xcor-im2col-forw.jpg

deprecated/kfun.html

 Navigation

 		
 index

 		Knet.jl 0.7.2 documentation »

The Anatomy of a @knet function

Simple function:

@knet function layer(x)
 w = par(dims=(100,0))
 b = par(dims=(0,))
 x1 = dot(w,x)
 x2 = add(b,x1)
 return relu(x2)
end

		We start using the return statement instead of a variable.

		Make semicolon in par optional.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1), 1929-1958:

@knet function drop(x)
 if training
 r = rnd(; rgen=Bernoulli(0.5))
 return mul(r,x)
 else
 return x
 end
end

		The return statement can take just a variable?

		Without else, do we return x or do we return nothing (nothing is
consistent with Julia). We should stick with Julia semantics
whenever possible.

		What if we return twice? Early returns will need to terminate
the forward pass or language restricted to single return. If
restricted to single return each branch can set the same variable
that eventually is returned. In either case x=y needs to be a
legitimate instruction and only copy when necessary.

Le, Q. V., Jaitly, N., & Hinton, G. E. (2015). A Simple Way to
Initialize Recurrent Networks of Rectified Linear Units. arXiv
preprint arXiv:1504.00941 (IRNN,S2C):

@knet function irnn(x; hidden=0)
 wx = wdot(x; out=hidden)
 wr = wdot(r; out=hidden, winit=Identity(scale))
 xr = add(wx,wr)
 xrb = bias(xr; out=hidden)
 r = relu(xrb)
 if predicting
 return wb(r; out=1)
 end
end

		The function may return nothing? If predicting does not trigger.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence
learning with neural networks. Advances in neural information
processing systems, 3104-3112. (S2S):

@knet function s2s(word)
 if encoding
 wvec1 = wdot(word; out=hidden)
 hvec1 = lstm(wvec; out=hidden)
 else
 wvec2 = wdot(word; out=hidden)
 hvec2 = lstm(wvec; out=hidden)
 return wf(hvec2; out=vocab, f=soft)
 end
end

		Problem: this won’t work because the two lstms are not sharing hidden state.

S2S second attempt:

@knet function lstm2(x,h)
 input = add2(x,h; f=sigm)
 forget = add2(x,h; f=sigm)
 output = add2(x,h; f=sigm)
 newmem = add2(x,h; f=tanh)
 ig = mul(input,newmem)
 fc = mul(forget,cell)
 cell = add(ig,fc)
 tc = tanh(cell)
 return mul(tc,output)
end

@knet function s2s(word)
 if encoding
 x = wdot(word; out=hidden)
 h = lstm2(x,h)
 else
 x = wdot(word; out=hidden)
 h = lstm2(x,h)
 return wf(h; out=vocab, f=soft)
 end
end

		Make sure x=f(x) works.

		The two wdot and lstm2 keep their own weights.

		But they do share x and h (check this in compiler output).

		If we set x and h outside of the if statement, they’d also be
sharing wdot and lstm weights.

		Unlike local variables x and h keep their state between calls, they
are more like static variables in C.

		Need to figure out how to pass in the conditionals: we user regular
parameters for runtime inputs, keyword argument for initialization.
The compiler adds a final parameter for the output symbol. The
condition can be (1) a global variable, (2) the final parameter, (3)
an optional parameter, (4) a keyword argument.

		We need to remember the conditions in the stack for back
calculation. So make conditions explicit inputs? Do we handle this
behind the scenes?

		Global condition seems to avoid complicating syntax, but
semantically the condition is one of the inputs that determine the
behavior of the funciton, so is hiding this going to cause trouble
later? Will we need other global inputs? Will we need other runtime
inputs that are not arrays? Some alternatives:

@knet function s2s(x, cond)
 if in(:training, cond)
 ...
 if cond.training
 ...
 if training
 ...
 if cond[:training]
 ...

		If we make cond an explicit parameter, will it also be passed down
to child operations?

		How about if we pass a environment table of globals to make it more
general? We’d have undefined variable problem if we did not specify
every condition. A list of “true” symbols is more concise and serves the
purpose right now.

Gutmann, M. U., & Hyvärinen, A. (2012). Noise-contrastive estimation
of unnormalized statistical models, with applications to natural image
statistics. The Journal of Machine Learning Research, 13(1),
307-361. (NCE):

@knet function nce(x, r; kqvec=nothing)
 h = lstm(x)
 w = par(dims=(vocab,0))
 b = par(dims=(vocab,1))
 if training
 q = arr(init=kqvec)
 rw = dot(r,w)
 rb = dot(r,b)
 rq = dot(r,q)
 y = dot(rw,h)
 s = add(rb,y)
 return nce(rq,s)
 else
 y = dot(w,h)
 s = add(b,y1)
 return soft(y2)
 end
end

		We could define nce(x) and nce(x,r) as two functions but then cannot parameter share

		What do we pass for r when training, can we use r=nothing to make it optional?

		Insist on single return at the end?

		Should we pass q as an additional parameter? No: Will result in copy
every time.

		Compounds and operators would shorten the code significantly, e.g.
return nce(r*q, r*b + (r*w)*h)

		Use Julia operator names, i.e. .* for mul.

		Julia parses 2a into *(2,a).

		2a+b is correctly parenthesized into +(*(2,a),b).

		2*a*b is not parenthesized *(2,a,b) but 2a*b is turned into *(*(2,a),b).

		So handling compounds and arithmetic operators should be fairly simple.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural
Networks, 18(5), 602-610. (BRNN):

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006,
June). Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning (pp. 369-376)
(CTC):

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective Approaches
to Attention-based Neural Machine Translation. arXiv preprint
arXiv:1508.04025. (Att):

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing
Machines. arXiv preprint arXiv:1410.5401. (NTM):

** Draft **

Let us illustrate the basic components of a @knet function using the
following example:

@knet function layer(x; out=0, f=relu, o...)
 w = par(; o..., dims=(out,0))
 b = par(; o..., dims=(0,))
 x1 = dot(w,x)
 x2 = add(b,x1)
 x3 = f(x2; o...)
end

The definition starts with @knet function followed by the name of
the function. Next comes the argument list which has several parts:

		Parameters before the semicolon denote the runtime inputs to the
function.

		Keyword arguments after the semicolon are used to provide
initialization parameters that customize the operators used in the
function.

		A final parameter with three dots at the end denotes possible
additional keyword arguments.

The important thing to remember is that everything before the
semicolon is for the runtime, and everything after the semicolon is
for the compiler. The compiler uses the keyword arguments to
customize the operators in the function definition and they are never
used again.

The body of the function contains a sequence of Knet instructions. It
is important to remember that these instructions are not Julia
statements. They are very restricted, and are more like machine
language instructions than statements in a high level language. Each
Knet instruction consists of a local variable, an equal sign, and an
operator with some arguments.

During the forward pass (?) the instructions are executed in the order
given, each instruction overwriting the value of the left-hand-side
variable. The output of the function is the value of the last
variable set. During the backward pass, each instruction computes the
loss gradient with respect to its inputs given the loss gradient with
respect to its output.

The operator of a Knet instruction can be a primitive (?), or another
user defined Knet function. The argument syntax is similar to that of
a Knet function definition: runtime inputs before the semicolon, and
keyword arguments that specify initialization parameters after the
semicolon. The values for the keyword arguments of an operator can
refer to constants or keyword arguments of the enclosing function but
not to any parameters or local variables. Remember, parameters and
local variables change during runtime, keyword arguments are only used
during initialization.

_images/sub.jpg
1
2

|
w
I

_images/mnist_softmax.png
negative loglikelihood misclassification error

036 0105
rain rain
04 test 01 test
0m 0095
009
03
0085
028
008
028 0075
024 007
022 0,085
010 20 30 40 50 60 70 80 90 100 010 20 30 40 50 60 70 80 90 100

epochs epochs

_static/comment-close.png

deprecated/nce.html

 Navigation

 		
 index

 		Knet.jl 0.7.2 documentation »

Noise Contrastive Estimation

Noise contrastive estimation (NCE) replaces the expensive
vocabulary-sized softmax operation at the final layer of language
(?) models with a cheaper sampling based operation, which results in
significant speed-up during training. To motivate NCE, let us start
with the basic equations for probabilistic models.

To model the probability distribution \(p(y)\) of a set of objects
\(y \in \mathcal{Y}\), we start with a score function
\(s_\theta(y):\mathcal{Y}\rightarrow\mathbb{R}\) with adjustable
weights \(\theta\). For example log-linear models use
\(s_\theta(y)=\theta^T \phi(y)\) where \(\theta\) is a weight
vector and \(\phi(y):\mathcal{Y}\rightarrow\mathbb{R}^D\) is a
function that maps an element of \(\mathcal{Y}\) to a vector of
real valued features. Conditional models use \(p(y|x)\),
\(s_\theta(x,y)\), and \(\phi(x,y)\) instead. We will stick
with non-conditional notation for brevity.

To go from arbitrary valued scores to normalized probability estimates
we use exponentiation and normalization (which, for some reason, is
called the softmax function):

\[p_\theta(y) = \frac{\exp s_\theta(y)}{\sum_{y'\in \mathcal{Y}} \exp s_\theta(y')}\]

The maximum likelihood estimate (MLE) training objective is to
maximize the estimated probability of a given training set
\(Y=\{y_1,\ldots,y_n\}\). Assuming the instances in the training
set are selected independently we have \(\log p_\theta(Y) =
\sum_{y\in Y} \log p_\theta(y)\). The contribution of an individual
instance to the objective is:

\[L_{MLE}(\theta) = \log p_\theta(y) = s_\theta(y) - \log\sum_{y'\in\mathcal{Y}}\exp s_\theta(y')\]

Stochastic gradient descent (SGD) uses the gradient of this quantity
with respect to the weights \(\theta\) to find the MLE solution:

\[\begin{split}\nabla L_{MLE}(\theta) &= \nabla s_\theta(y) - \nabla \log\sum_{y'\in\mathcal{Y}}\exp s_\theta(y') \\
&= \nabla s_\theta(y) - \frac{\sum_{y'\in\mathcal{Y}}\exp s_\theta(y') \nabla s_\theta(y')}{\sum_{y'\in\mathcal{Y}}\exp s_\theta(y')} \\
&= \nabla s_\theta(y) - \sum_{y'\in\mathcal{Y}} p_\theta(y') \nabla s_\theta(y')\end{split}\]

Note that the second term in the final equation involves a sum over
the whole \(\mathcal{Y}\) which is typically a computational
nightmare. In order to avoid this sum, people have come up with all
sorts of tricks. One simple example is the perceptron
approximation (ref?):

\[\begin{split}\log\sum_{y'\in\mathcal{Y}}\exp s_\theta(y') \approx \max_{y'\in\mathcal{Y}} s_\theta(y') \\
\nabla L(\theta) \approx \nabla s_\theta(y) - \nabla \max_{y'\in\mathcal{Y}} s_\theta(y')\end{split}\]

Here is an example to demonstrate why this makes sense. Let’s say
\(\mathcal{Y}\) has three elements and their scores,
\(s_\theta(y')\), are 10, 20, and 30. When we exponentiate these
scores we get \(e^{10}\), \(e^{20}\) and \(e^{30}\). Note
that even though 20 and 30 are not all that different,
\(e^{30}\approx 10^{13}\) is significantly larger than
\(e^{20}\approx 5\times 10^9\). When we add the exponentials,
\(e^{10}+e^{20}+e^{30}\), the result will not be significantly
different from \(e^{30}\), and thus the result of the final
\(\log\) will not be that different from 30 (it is
30.000045401... if you are curious) (and that is why
\(\log\sum\exp\) should be called the softmax function).

The perceptron approximation seems to replace the expensive summation
with an equally expensive looking max operation. Fortunately the max
operation can be performed fast for certain classes of problems. This
will be the topic of another chapter, for now let’s get back to NCE.

NCE takes a different approach to avoid the costly summation. Instead
of modeling the empirical distribution \(p(y)\) directly, it
proposes solving the related binary classification problem of
distinguishing samples generated by \(p(y)\) from samples
generated by a “noise” distribution \(q(y)\). It is common
practice to use a simple uniform distribution or, for language models,
the unigram distribution for \(q(y)\).

How is the binary classification problem of deciding \(p\) vs
\(q\) related to the original density estimation problem of
modeling \(p\)? Assume we generate \(k\) noise samples
\(y_{1\ldots k}\sim q(y)\) for each real sample and add them to
our original training data. We label each real sample with
\(d=1\) and each noise sample with \(d=0\) to train a binary
classifier. The joint probability of the samples and labels in this
new dataset is:

\[p(d=1, y) = \frac{1}{k+1}\,p(y) \qquad
p(d=0, y) = \frac{k}{k+1}\,q(y)\]

The conditional probability of the label given the sample is:

\[p(d=1\mid y) = \frac{p(y)}{p(y)+k\,q(y)} \qquad
p(d=0\mid y) = \frac{k\,q(y)}{p(y)+k\,q(y)}\]

This means \(p(d=1\mid y)\) and \(p(y)\) are related by a
simple algebraic identity. In fact, if somebody hands us a good
estimate for \(p(d=1\mid y)\), we can turn it into an esimate for
\(p(y)\):

\[p(y) = k\, q(y)\, \frac{p(d=1\mid y)}{p(d=0\mid y)}\]

NCE (ref?) suggests training the following binary classifier model for
\(p(d=1\mid y)\) on the dataset with noise samples.

\[p_\theta(d=1\mid y) = \frac{\exp s_\theta(y)}{\exp s_\theta(y) + k\,q(y)}\]

Using this model will give us the following for \(p_\theta(y)\):

\[\begin{split}p_\theta(y) &= k\, q(y)\, \frac{p_\theta(d=1\mid y)}{p_\theta(d=0\mid y)} \\
&= k\,q(y)\, \frac{\exp s_\theta(y)}{k\,q(y)} \\
&= \exp s_\theta(y)\end{split}\]

which amounts to assuming our costly normalization term
\(Z=\sum_{y'\in \mathcal{Y}} \exp s_\theta(y')\) is \(1\) (ref?).

Our new objective is to maximize the conditional probability of the
NCE dataset. Consider the conditional log probability of a real
sample \(y_0\) and \(k\) noise samples \(y_1\ldots y_k\):

\[\begin{split}L_{NCE}(\theta)
&= \log p_\theta(d=1\mid y_0) + \sum_{i=1}^k \log p_\theta(d=0\mid y_i) \\
&= s_\theta(y_0) - \log(\exp s_\theta(y_0) + k\,q(y_0)) +
 \sum_{i=1}^k \log(k\,q(y_i)) - \log(\exp s_\theta(y_i) + k\,q(y_i))\end{split}\]

The gradient of the new objective is:

\[\begin{split}\nabla L_{NCE}(\theta)
&= \nabla s_\theta(y_0) - \sum_{i=0}^k \nabla \log(\exp s_\theta(y_i) + k\,q(y_i)) \\
&= \nabla s_\theta(y_0) - \sum_{i=0}^k p_\theta(d=1\mid y_i) \nabla s_\theta(y_i)\end{split}\]

In the limit \(k\rightarrow\infty\) we see that the NCE gradient
approaches the MLE gradient:

\[\begin{split}\nabla L_{NCE}(\theta)
&\rightarrow \nabla s_\theta(y_0) - \sum_{y\in\mathcal{Y}} k\, q(y) p_\theta(d=1\mid y) \nabla s_\theta(y) \\
&= \nabla s_\theta(y_0) - \sum_{y\in\mathcal{Y}} k\, q(y) \frac{\exp s_\theta(y)}{\exp s_\theta(y) + k\,q(y)} \nabla s_\theta(y) \\
&\rightarrow \nabla s_\theta(y_0) - \sum_{y\in\mathcal{Y}} \exp s_\theta(y) \nabla s_\theta(y) \\
&= \nabla s_\theta(y_0) - \sum_{y\in\mathcal{Y}} p_\theta(y) \nabla s_\theta(y)\end{split}\]

What does this all mean computationally? Let’s compare the operations
of MLE and NCE language models in their final layers. Say both models
use a \(D\)-dimensional internal representation. For the MLE
model, the output is a \(V\)-dimensional probability vector where
\(V\) is the vocabulary size. The forward pass involves
multiplication of the \(D\)-dimensional internal representation
with a \(V \times D\) decoding matrix and normalization of the
result, an \(O(VD)\) operation.

The NCE model, on the other hand, only needs the scores of the correct
word and \(K\) additional noise sample words during training.
This involves extracting \(K+1\) rows from the \(V \times D\)
decoding matrix, multiplying the \(D\)-dimensional internal
representation with the resulting \((K+1) \times D\) matrix and no
normalization, an \(O(KD)\) operation. Because \(K \ll V\)
this results in a large speed-up.

Here is the backward pass for MLE (with subscripts dropped for
brevity):

\[\begin{split}&p(y) = \frac{\exp s(y)}{\sum_{y'\in\mathcal{Y}}\exp s(y')} \\
&L = \log p(y) = s(y) - \log\sum_{y'\in\mathcal{Y}}\exp s(y') \\\
&{\partial L}/{\partial s(y)} = 1 - p(y) \\
&{\partial L}/{\partial s(y')} = -p(y')\end{split}\]

Here is the backward pass for NCE:

\[\begin{split}&p(d=1\mid y) = \frac{\exp s(y)}{\exp s(y) + k\,q(y)} \qquad p(d=0\mid y) = \frac{k\,q(y)}{\exp s(y) + k\,q(y)} \\
&L = \log p(d=1\mid y) + \sum_{i=1}^k \log p(d=0\mid y_i) \\
&L = s(y) - \log(\exp s(y)+k\,q(y)) + \sum_{i=1}^k \log(k\,q(y_i)) - \log(\exp s(y_i)+k\,q(y_i)) \\
&{\partial L}/{\partial s(y)} = 1 - p(d=1\mid y) \\
&{\partial L}/{\partial s(y_i)} = -p(d=1\mid y_i)\end{split}\]

Research Ideas:

		Can we use the words in a minibatch as noise samples for each other,
presumably with an importance sampling correction factor?

		Can we use other models for the binary classification problem?

References:

Gutmann, M. U., & Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. The Journal of Machine Learning Research, 13(1), 307-361.

Mnih, A., & Teh, Y. W. (2012). A fast and simple algorithm for training neural probabilistic language models. arXiv preprint arXiv:1206.6426.

Dyer, C. (2014). Notes on Noise Contrastive Estimation and Negative Sampling. arXiv preprint arXiv:1410.8251.

